Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Int J Infect Dis ; 140: 62-69, 2024 Mar.
Article En | MEDLINE | ID: mdl-38176643

OBJECTIVES: This study aimed to investigate the association between drug exposure and adverse events (AEs) during the standardized multidrug-resistant tuberculosis (MDR-TB) treatment, as well as to identify predictive drug exposure thresholds. METHODS: We conducted a prospective, observational multicenter study among participants receiving standardized MDR-TB treatment between 2016 and 2019 in China. AEs were monitored throughout the treatment and their relationships to drug exposure (e.g., the area under the drug concentration-time curve from 0 to 24 h, AUC0-24 h) were analyzed. The thresholds of pharmacokinetic predictors of observed AEs were identified by boosted classification and regression tree (CART) and further evaluated by external validation. RESULTS: Of 197 study participants, 124 (62.9%) had at least one AE, and 15 (7.6%) experienced serious AEs. The association between drug exposure and AEs was observed including bedaquiline, its metabolite M2, moxifloxacin and QTcF prolongation (QTcF >450 ms), linezolid and mitochondrial toxicity, cycloserine and psychiatric AEs. The CART-derived thresholds of AUC0-24 h predictive of the respective AEs were 3.2 mg·h/l (bedaquiline M2); 49.3 mg·h/l (moxifloxacin); 119.3 mg·h/l (linezolid); 718.7 mg·h/l (cycloserine). CONCLUSIONS: This study demonstrated the drug exposure thresholds predictive of AEs for key drugs against MDR-TB treatment. Using the derived thresholds will provide the knowledge base for further randomized clinical trials of dose adjustment to minimize the risk of AEs.


Antitubercular Agents , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Cycloserine/adverse effects , Diarylquinolines/therapeutic use , Linezolid/adverse effects , Moxifloxacin/therapeutic use , Prospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy
2.
Microorganisms ; 12(1)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38258027

In this paper, an automatic colony counting system based on an improved image preprocessing algorithm and convolutional neural network (CNN)-assisted automatic counting method was developed. Firstly, we assembled an LED backlighting illumination platform as an image capturing system to obtain photographs of laboratory cultures. Consequently, a dataset was introduced consisting of 390 photos of agar plate cultures, which included 8 microorganisms. Secondly, we implemented a new algorithm for image preprocessing based on light intensity correction, which facilitated clearer differentiation between colony and media areas. Thirdly, a U2-Net was used to predict the probability distribution of the edge of the Petri dish in images to locate region of interest (ROI), and then threshold segmentation was applied to separate it. This U2-Net achieved an F1 score of 99.5% and a mean absolute error (MAE) of 0.0033 on the validation set. Then, another U2-Net was used to separate the colony region within the ROI. This U2-Net achieved an F1 score of 96.5% and an MAE of 0.005 on the validation set. After that, the colony area was segmented into multiple components containing single or adhesive colonies. Finally, the colony components (CC) were innovatively rotated and the image crops were resized as the input (with 14,921 image crops in the training set and 4281 image crops in the validation set) for the ResNet50 network to automatically count the number of colonies. Our method achieved an overall recovery of 97.82% for colony counting and exhibited excellent performance in adhesion classification. To the best of our knowledge, the proposed "light intensity correction-based image preprocessing→U2-Net segmentation for Petri dish edge→U2-Net segmentation for colony region→ResNet50-based counting" scheme represents a new attempt and demonstrates a high degree of automation and accuracy in recognizing and counting single-colony and multi-colony targets.

3.
Pharmaceutics ; 16(1)2024 Jan 21.
Article En | MEDLINE | ID: mdl-38276514

Exploring the influence of pyrazinamide exposure and susceptibility on treatment response is crucial for optimizing the management of multidrug-resistant tuberculosis (MDR-TB). This study aimed to investigate the association between pyrazinamide exposure, susceptibility, and response to MDR-TB treatment, as well as find clinical thresholds for pyrazinamide. A prospective multi-center cohort study of participants with MDR-TB using pyrazinamide was conducted in three TB-designated hospitals in China. Univariate and multivariate analyses were applied to investigate the associations. Classification and Regression Tree (CART) analysis was used to identify clinical thresholds, which were further evaluated by multivariate analysis and receiver operating characteristic (ROC) curves. The study included 143 patients with MDR-TB. The exposure/susceptibility ratio of pyrazinamide was associated with two-month culture conversion (adjusted risk ratio (aRR), 1.1; 95% confidence interval (CI), 1.07-1.20), six-month culture conversion (aRR, 1.1; 95% CI, 1.06-1.16), treatment success (aRR, 1.07; 95% CI, 1.03-1.10), as well as culture conversion time (adjusted hazard ratio (aHR) 1.18; 95% CI,1.14-1.23). The threshold for optimal improvement in sputum culture results at the sixth month of treatment was determined to be a pyrazinamide AUC0-24h/MIC ratio of 7.8. In conclusion, the exposure/susceptibility ratio of pyrazinamide is associated with the treatment response of MDR-TB, which may change in different Group A drug-based regimens.

4.
ACS Sens ; 8(11): 4064-4070, 2023 11 24.
Article En | MEDLINE | ID: mdl-37950693

Diabetes is a chronic disease caused by a decrease in insulin level or insulin resistance. Diabetes also has detrimental effects on the brain, which can lead to the injury of the blood-brain barrier and influence the glucose transport. In this study, we use in vivo electrochemical measurement to explore the glucose variation in the brain of early diabetic mice. The glucose level in mice brain is measured using a carbon fiber microelectrode modified with the osmium-derivatized polymer and glucose oxidase. The electrode shows an excellent electrochemical performance, antibiofouling ability, and high stability, which can work stably in the mice brain for 2 h. By monitoring the glucose level in the brain of normal and diabetic mice after injection of concentrated glucose solution into the abdominal cavity, it is found that the variation of cerebral glucose decreases by ∼2 fold for diabetic mice. It is proposed that diabetes can downregulate the activity of glucose transporter in the brain and finally inhibit the brain glucose uptake.


Diabetes Mellitus, Experimental , Glucose , Mice , Animals , Glucose/pharmacology , Brain , Glucose Oxidase , Microelectrodes
5.
Adv Mater ; 35(42): e2305583, 2023 Oct.
Article En | MEDLINE | ID: mdl-37498452

Living materials represent a new frontier in functional material design, integrating synthetic biology tools to endow materials with programmable, dynamic, and life-like characteristics. However, a major challenge in creating living materials is balancing the tradeoff between structural stability, mechanical performance, and functional programmability. To address this challenge, a sheath-core living hydrogel fiber platform that synergistically integrates living bacteria with hydrogel fibers to achieve both functional diversity and structural and mechanical robustness is proposed. In the design, microfluidic spinning is used to produce hydrogel fiber, which offers advantages in both structural and functional designability due to their hierarchical porous architectures that can be tailored and their mechanical performance that can be enhanced through a variety of post-processing approaches. By introducing living bacteria, the platform is endowed with programmable functionality and life-like capabilities. This work reconstructs the genetic circuits of living bacteria to express chromoproteins and fluorescent proteins as two prototypes that enable the coloration of living fibers and sensing water pollutants by monitoring the amount of fluorescent protein expressed. Altogether, this study establishes a structure-property-function optimized living hydrogel fiber platform, providing a new tool for accelerating the practical applications of the emerging living material systems.


Bioengineering , Hydrogels , Hydrogels/chemistry , Bacteria
6.
Hepatol Commun ; 7(7)2023 07 01.
Article En | MEDLINE | ID: mdl-37314767

BACKGROUND: HCC characterizes malignant metastasis with high incidence and recurrence. Thus, it is pivotal to discover the mechanisms of HCC metastasis. TATA-box-binding protein (TBP), a general transcriptional factor (TF), couples with activators and chromatin remodelers to sustain the transcriptional activity of target genes. Here, we investigate the key role of TBP in HCC metastasis. METHODS: TBP expression was measured by PCR, western blot, and immunohistochemistry. RNA-sequencing was performed to identify downstream proteins. Functional assays of TBP and downstream targets were identified in HCC cell lines and xenograft models. Luciferase reporter and chromatin immunoprecipitation assays were used to demonstrate the mechanism mediated by TBP. RESULTS: HCC patients showed high expression of TBP, which correlated with poor prognosis. Upregulation of TBP increased HCC metastasis in vivo and in vitro, and muscleblind-like-3 (MBNL3) was the effective factor of TBP, positively related to TBP expression. Mechanically, TBP transactivated and enhanced MBNL3 expression to stimulate exon inclusion of lncRNA-paxillin (PXN)-alternative splicing (AS1) and, thus, activated epithelial-mesenchymal transition for HCC progression through upregulation of PXN. CONCLUSIONS: Our data revealed that TBP upregulation is an HCC enhancer mechanism that increases PXN expression to drive epithelial-mesenchymal transition.


Carcinoma, Hepatocellular , Liver Neoplasms , TATA-Box Binding Protein , Humans , Biological Assay , Carcinoma, Hepatocellular/genetics , Epithelial-Mesenchymal Transition/genetics , Liver Neoplasms/genetics , RNA-Binding Proteins/genetics , TATA-Box Binding Protein/genetics , Animals
7.
Mar Biotechnol (NY) ; 25(3): 463-472, 2023 Jun.
Article En | MEDLINE | ID: mdl-37289264

Isochrysis zhangjiangensis is an important microalgal species used as bait in aquaculture. However, its optimal cultivation temperature is around 25 °C, limiting its use in summer when temperature is higher. To overcome this limitation, we aimed to develop a consortia of I. zhangjiangensis and bacteria that are more resistant to heat stress. Here, six thermotolerance-promoting bacterial strains were isolated from the culture of a heat-tolerant mutant strain of I. zhangjiangensis (IM), and identified as Algoriphagus marincola, Nocardioides sp., Pseudidiomarina sp., Labrenzia alba, Nitratireductor sp., and Staphylococcus haemolyticus. Further, co-culturing I. zhangjiangensis with A. marincola under high temperature conditions increased cell density, chlorophyll a, PSII maximum photochemical efficiency (Fv/Fm), and soluble protein content of microalgae. The presence of A. marincola positively influenced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and total antioxidant capacity (T-AOC) in I. zhangjiangensis cells, while concurrently reducing the levels of reactive oxygen species (ROS). Additionally, gene expression studies confirmed that co-culturing with A. marincola upregulated the expression of antioxidant-related genes (sod and pod) and stress tolerance genes (heat shock protein genes). Our findings indicate that A. marincola effectively helps I. zhangjiangensis withstand high temperature stress, leading to improved yield of microalgae during high temperature conditions. The thermotolerance-promoting bacteria can be exploited as potential inoculants for enhancing the productivity and sustainability of bait microalgae in aquaculture.


Haptophyta , Thermotolerance , Antioxidants/metabolism , Haptophyta/metabolism , Chlorophyll A/metabolism , Bacteria
8.
Liver Int ; 43(9): 1920-1936, 2023 09.
Article En | MEDLINE | ID: mdl-37183512

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) consists of a broad spectrum of conditions, and nonalcoholic steatohepatitis (NASH) is the advanced form of NAFLD. TAF15 is a DNA and RNA binding protein and is involved in crucial inflammatory signalling pathways. We aimed to investigate the role of TAF15 in the progression of NASH and the underlying molecular mechanism. METHODS: We generated mice with hepatocyte-specific knockdown and overexpression of TAF15 using a specific adeno-associated virus (AAV). NASH models were established by feeding mice high-fat and high-cholesterol diets and methionine- and choline-deficient diets. Cleavage under targets and tagmentation and dual-luciferase reporter assays were performed to investigate the effect of TAF15 on FASN transcription. Coimmunoprecipitation and immunofluorescence assays were conducted to explore the interaction of TAF15 and p65. In vitro coculture systems were established to study the interactions of hepatocytes, macrophages and HSCs. RESULTS: TAF15 was significantly increased in the livers of mouse NASH models and primary hepatocyte NASH model. Knockdown of TAF15 inhibited steatosis, inflammation and fibrosis, while overexpression of TAF15 promoted NASH phenotypes. Mechanistically, TAF15 bound directly to the promoter region of FASN to facilitate its expression, thereby promoting steatosis. Moreover, TAF15 interacted with p65 and activated the NF-κB signalling pathway, increasing the secretion of proinflammatory cytokines and triggering M1 macrophage polarization. Treatment with the FASN inhibitor orlistat partially reversed the phenotypes. CONCLUSIONS: These results suggested that TAF15 exacerbated NASH progression by regulating lipid metabolism and inflammation via transcriptional activation of FASN and interacting with p65 to activate the NF-κB signalling pathway.


Non-alcoholic Fatty Liver Disease , TATA-Binding Protein Associated Factors , Animals , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , NF-kappa B/metabolism , Lipid Metabolism , Liver/metabolism , Inflammation/metabolism , Disease Models, Animal , Mice, Inbred C57BL , TATA-Binding Protein Associated Factors/metabolism
9.
Liver Int ; 43(7): 1473-1485, 2023 07.
Article En | MEDLINE | ID: mdl-37088973

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Aberrant lipid metabolism and accumulation of extracellular matrix proteins are hallmarks of the disease, but the underlying mechanisms are largely unknown. This study aims to elucidate the key role of sine oculis homeobox homologue 1 (SIX1) in the development of NAFLD. METHODS: Alb-Cre mice were administered the AAV9 vector for SIX1 liver-specific overexpression or knockdown. Metabolic disorders, hepatic steatosis, and inflammation were monitored in mice fed with HFHC or MCD diet. High throughput CUT&Tag analysis was employed to investigate the mechanism of SIX1 in diet-induced steatohepatitis. RESULTS: Here, we found increased SIX1 expression in the livers of NAFLD patients and animal models. Liver-specific overexpression of SIX1 using adeno-associated virus serotype 9 (AAV9) provoked more severe inflammation, metabolic disorders, and hepatic steatosis in the HFHC or MCD-induced mice model. Mechanistically, we demonstrated that SIX1 directly activated the expression of liver X receptor α (LXRα) and liver X receptor ß (LXRß), thus inducing de novo lipogenesis (DNL). In addition, our results also illustrated a critical role of SIX1 in regulating the TGF-ß pathway by increasing the levels of type I and II TGF-ß receptor (TGFßRI/TGFßRII) in hepatic stellate cells (HSCs). Finally, we found that liver-specific SIX1 deficiency could ameliorate diet-induced NAFLD pathogenesis. CONCLUSION: Our findings suggest a detrimental function of SIX1 in the progression of NAFLD. The direct regulation of LXRα/ß and TGF-ß signalling by SIX1 provides a new regulatory mechanism in hepatic steatosis and fibrosis.


Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Lipogenesis/physiology , Liver/pathology , Fibrosis , Inflammation/pathology , Transforming Growth Factor beta/metabolism , Mice, Inbred C57BL , Diet, High-Fat
10.
Opt Express ; 30(14): 24689-24702, 2022 Jul 04.
Article En | MEDLINE | ID: mdl-36237017

Traditional planar diffractive optical elements (DOEs) are challenged in imaging systems due to diffraction efficiency and chromatic dispersion. In this paper, we have designed a microfluidic diffractive optical element (MFDOE), which is processed by digital micromirror device (DMD) maskless lithography (DMDML) assisted femtosecond laser direct writing (FsLDW). MFDOE is a combination of photoresist-based multi-layer harmonic diffraction surface and liquid, realizing diffraction efficiency of more than 90% in the visible band. And it shows achromatic characteristics in the two bands of 469 nm (±20 nm) and 625 nm (±20 nm). These results show that MFDOE has good imaging performance.

11.
Cell Prolif ; 55(12): e13253, 2022 Dec.
Article En | MEDLINE | ID: mdl-36200182

OBJECTIVE: Metastasis is responsible for the poor prognosis of patients with colorectal cancer (CRC), and the role of aberrant expression of endoplasmic reticulum (ER) receptors in tumour metastasis has not been fully elucidated. The aim of the study is to ensure the role of ER-resident protein Sec62 in CRC metastasis and illuminate associated molecular mechanisms. MATERIALS AND METHODS: Bioinformatics analysis, qRT-PCR, western blot and immunohistochemistry assays were performed to evaluate the expression level and clinical significance of Sec62 in CRC. The specific role of Sec62 in CRC was identified by a series of functional experiments. We conducted RNA sequencing and rescue experiments to analyse the differentially expressed genes and identified UCA1 as a novel pro-metastasis target of Sec62 in CRC. Besides, the efficacy of MAPK/JNK inhibitor or agonist on Sec62-mediated CRC metastasis was evaluated by trans-well and wound healing assays. Finally, luciferase reporter and ChIP assay were employed to further explore the potential mechanisms. RESULTS: The abnormally elevated expression of Sec62 predicted poor prognosis of CRC patients and facilitated malignant metastasis of CRC cells. Mechanistically, Sec62 enhanced UCA1 expression through activating MAPK/JNK signalling pathway. And the p-JNK activating ATF2 could transcriptionally regulate UCA1 expression. Furthermore, blocking or activating MAPK/JNK signalling with JNK inhibitor or agonist potently suppressed or enhanced Sec62 mediated CRC metastatic process. CONCLUSIONS: Our study reports for the first time that the Sec62/MAPK/ATF2 /UCA1 axis exists in CRC metastatic process, which could be a potential treatment target of metastatic CRC.


Colorectal Neoplasms , Humans , Colorectal Neoplasms/genetics , MAP Kinase Signaling System , Signal Transduction , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Cell Line, Tumor , Neoplasm Metastasis/pathology , Cell Proliferation/genetics , Membrane Transport Proteins/metabolism , Activating Transcription Factor 2/metabolism
12.
Cell Death Dis ; 13(8): 742, 2022 08 29.
Article En | MEDLINE | ID: mdl-36038548

Ferroptosis, a novel regulated cell death induced by iron-dependent lipid peroxidation, plays an important role in tumor development and drug resistance. Long noncoding RNAs (lncRNAs) are associated with various types of cancer. However, the precise roles of many lncRNAs in tumorigenesis remain elusive. Here we explored the transcriptomic profiles of lncRNAs in primary CRC tissues and corresponding paired adjacent non-tumor tissues by RNA-seq and found that LINC00239 was significantly overexpressed in colorectal cancer tissues. Abnormally high expression of LINC00239 predicts poorer survival and prognosis in colorectal cancer patients. Concurrently, we elucidated the role of LINC00239 as a tumor-promoting factor in CRC through in vitro functional studies and in vivo tumor xenograft models. Importantly, overexpression of LINC00239 decreased the anti-tumor activity of erastin and RSL3 by inhibiting ferroptosis. Collectively, these data suggest that LINC00239 plays a novel and indispensable role in ferroptosis by nucleotides 1-315 of LINC00239 to interact with the Kelch domain (Nrf2-binding site) of Keap1, inhibiting Nrf2 ubiquitination and increasing Nrf2 protein stability. Considering the recurrence and chemoresistance constitute the leading cause of death in colorectal cancer (CRC), ferroptosis induction may be a promising therapeutic strategy for CRC patients with low LINC00239 expression.


Colorectal Neoplasms , Ferroptosis , RNA, Long Noncoding , Colorectal Neoplasms/pathology , Ferroptosis/genetics , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
13.
Mar Biotechnol (NY) ; 24(4): 753-762, 2022 Aug.
Article En | MEDLINE | ID: mdl-35902415

Isochrysis galbana is widely used in aquaculture as a bait microalgal species. High temperature (HT) can severely impair the development of I. galbana, exerting adverse effects on its yield. MicroRNAs (miRNAs) play an essential role in modulating stress-responsive genes. However, the role of miRNAs in response to HT in microalgae remains largely unexplored. In the present study, we identified several conserved and novel miRNAs in I. galbana through miRNome sequencing. Among these identified miRNAs, 22 miRNAs were differentially expressed in response to heat stress, and their target genes were predicted accordingly. Moreover, a comprehensive and integrated analysis of miRNome and transcriptome was performed. We found that six potential reversely correlated differentially expressed miRNA (DEM) and differentially expressed gene (DEG) pairs were associated with heat stress response (HSR) in I. galbana. The expressions of DEMs and DEGs were further verified using real-time quantitative PCR (RT-qPCR). Integrated analyses showed that miRNAs played fundamental roles in the regulatory network of HSR in I. galbana mainly by regulating some heat-responsive genes, including heat shock proteins (HSPs), reactive oxygen species (ROS) signaling-related genes, and specific key genes in the ubiquitination pathway. Our current study identified the first set of heat-responsive miRNAs from I. galbana and helped elucidate the miRNA-mediated HSR and resistance mechanisms in I. galbana. This new knowledge could provide ways to enhance its heat stress tolerance.


Haptophyta , MicroRNAs , Gene Expression Profiling , Gene Expression Regulation, Plant , Haptophyta/genetics , Haptophyta/metabolism , Heat-Shock Response/genetics , Hot Temperature , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome
14.
Cancer Cell Int ; 22(1): 102, 2022 Mar 04.
Article En | MEDLINE | ID: mdl-35246137

BACKGROUND: The role of CARM1 in tumors is inconsistent. It acts as an oncogene in most cancers but it inhibits the progression of liver and pancreatic cancers. CARM1 has recently been reported to regulate autophagy, but this function is also context-dependent. However, the effect of CARM1 on gastric cancer (GC) has not been studied. We aimed to explore whether CARM1 was involved in the progression of GC by regulating autophagy. METHODS: The clinical values of CARM1 and autophagy in GC were evaluated by immunohistochemistry and qRT-PCR. Transmission electron microscopy, immunofluorescence and western blotting were employed to identify autophagy. The role of CARM1 in GC was investigated by CCK-8, colony formation and flow cytometry assays in vitro and a xenograft model in vivo. Immunoprecipitation assays were performed to determine the interaction of CARM1 and TFE3. RESULTS: CARM1 was upregulated in clinical GC tissues and cell lines, and higher CARM1 expression predicted worse prognosis. CARM1 enhanced GC cell proliferation, facilitated G1-S transition and inhibited ER stress-induced apoptosis by regulating autophagy. Importantly, treatment with a CARM1 inhibitor rescued the tumor-promoting effects of CARM1 both in vitro and in vivo. Furthermore, we demonstrated that CARM1 promoted TFE3 nuclear translocation to induce autophagy through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. CONCLUSION: CARM1 promoted GC cell proliferation, accelerated G1-S transition and reduced ER stress-induced apoptosis by regulating autophagy. Mechanistically, CARM1 triggered autophagy by facilitating TFE3 nuclear translocation through the AMPK-mTOR and AMPK-CARM1-TFE3 signaling pathways.

16.
Mar Pollut Bull ; 174: 113203, 2022 Jan.
Article En | MEDLINE | ID: mdl-34896755

Increased urea is one of the common nitrogen forms polluting coastal waters and affecting nutrient dynamics. To investigate the effects of urea on sediment phosphorus (P) release, we carried out a 2-month mesocosm experiment with six targeted loadings of urea (0-0.6 mg N L-1 d-1). Results showed that: i) urea was rapidly transformed into ammonium and then nitrate (NO3-). ii) When nitrogen occurred as urea or ammonium, minor P release was observed. iii) After urea were mostly converted to NO3-, P release became clearer. iv) NO3- had a dual effect by promoting P release through decreasing sediment pH and increasing alkaline phosphatase activity or by inhibiting P release through improving sediment oxidation. v) The overall effects of urea on P release depended on the ultimate NO3- concentrations, being prominent when NO3- ≥ 11 mg N L-1. Our findings are of relevance when determining nitrogen reduction targets needed for combating eutrophication.


Phosphorus , Water Pollutants, Chemical , Eutrophication , Geologic Sediments , Nitrogen/analysis , Urea , Water Pollutants, Chemical/analysis
17.
Cancer Lett ; 524: 42-56, 2022 01 01.
Article En | MEDLINE | ID: mdl-34582976

Pancreatic ductal adenocarcinoma (PDAC) has the highest fatality rate of any solid tumor, with a five-year survival rate of only 10% in the USA. PDAC is characterized by early metastasis. More than 50% of patients present with distant metastases at the time of diagnosis, and the majority of patients will develop metastasis within 4 years after tumor resection. Despite extensive studies, the molecular mechanisms underlying PDAC metastasis remain unclear. The polyoma enhancer activator protein (PEA3) subfamily was reported to play a vital role in the initiation and progression of multiple tumors. Herein, we found that ETS variant 4 (ETV4) was highly expressed in PDAC tissues and associated with poor survival. Univariate and multivariate analyses revealed that ETV4 expression was an independent prognostic factor for patient survival. Further experiments showed that ETV4 overexpression promoted PDAC invasion and metastasis both in vitro and in vivo. For the first time, we demonstrated that, mechanistically, ETV4 increased CXCR5 expression by directly binding to the CXCR5 promoter region. Knockdown of CXCR5 significantly reversed ETV4-mediated PDAC migration and invasion, while CXCR5 overexpression exerted the opposite effects. Intriguingly, we found that CXCL13, a specific ligand of CXCR5, increased ETV4 expression and promoted PDAC invasion and metastasis by activating the ERK1/2 pathway. ETV4 knockdown significantly abrogated the enhanced migratory and invasive abilities induced by the CXCL13/CXCR5 axis. In addition, a CXCR5 neutralizing antibody disrupted the CXCL13/ETV4/CXCR5 positive feedback loop and inhibited cell migration and invasion. Overall, in this study, we demonstrated that ETV4 plays a vital role in PDAC metastasis and defined a novel CXCL13/ETV4/CXCR5 positive feedback loop. Targeting this pathway has implications for potential therapeutic strategies for PDAC treatment.


Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Chemokine CXCL13/genetics , Proto-Oncogene Proteins c-ets/genetics , Receptors, CXCR5/genetics , Adenocarcinoma/pathology , Adult , Aged , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Middle Aged , Signal Transduction/genetics
18.
Biochem Biophys Res Commun ; 585: 82-88, 2021 12 31.
Article En | MEDLINE | ID: mdl-34800884

The prevalence of invasive aspergillosis with azole resistance is increasing, but the mechanisms underlying the development of resistance and treatment strategies are still limited. The present work is focused on finding a relationship between long-chain unsaturated fatty acids (LCUFAs), Aspergillus fumigatus development, and antifungal resistance. The effects of LCUFAs on antifungal agents in vitro were determined, and the stearic acid desaturase gene (sdeA) of A. fumigatus was characterized. In in vitro antifungal tests, LCUFAs antagonized the antifungal activity of itraconazole by extracting it from media, thereby preventing it from entering cells. The OA auxotrophic phenotype caused by an sdeA deletion confirmed that SdeA was required for OA biosynthesis in A. fumigatus. Furthermore, several low-level sdeA-overexpressing mutants with impaired vegetative growth phenotypes were successfully constructed. Additionally, an sdeA-overexpressing mutant, OEsdeA-5, showed lowered sensitivity levels to itraconazole. Moreover, RNA sequencing of OEsdeA-5 revealed that the altered gene-expression pattern. Through targeted metabolomics, decreased palmitic acid and stearic acid contents, accompanied by higher palmitoleic acid, margaroleic acid, and OA production levels, were found in OEsdeA-5. This study provides a novel insight of understanding of azole resistance and a potential target for drug development.


Aspergillus fumigatus/genetics , Drug Resistance, Fungal/genetics , Fatty Acids/metabolism , Itraconazole/pharmacology , Microbial Viability/genetics , Antifungal Agents/pharmacology , Aspergillus fumigatus/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Metabolomics/methods , Mutation , Palmitic Acid/metabolism , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction , Stearic Acids/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
19.
Front Microbiol ; 12: 711998, 2021.
Article En | MEDLINE | ID: mdl-34566917

Phycospheric bacteria may be the key biological factors affecting the growth of algae. However, the studies about interaction between Isochrysis galbana and its phycospheric bacteria are limited. Here, we show that a marine heterotrophic bacterium, Alteromonas macleodii, enhanced the growth of I. galbana, and inhibited non-photochemical quenching (NPQ) and superoxide dismutase (SOD) activities of this microalgae. Further, we explored this phenomenon via examining how the entire transcriptomes of I. galbana changed when it was co-cultured with A. macleodii. Notable increase was observed in transcripts related to photosynthesis, carbon fixation, oxidative phosphorylation, ribosomal proteins, biosynthetic enzymes, and transport processes of I. galbana in the presence of A. macleodii, suggesting the introduction of the bacterium might have introduced increased production and transport of carbon compounds and other types of biomolecules. Besides, the transcriptome changed largely corresponded to reduced stress conditions for I. galbana, as inferred from the depletion of transcripts encoding DNA repair enzymes, superoxide dismutase (SOD) and other stress-response proteins. Taken together, the presence of A. macleodii mainly enhanced photosynthesis and biosynthesis of I. galbana and protected it from stress, especially oxidative stress. Transfer of fixed organic carbon, but perhaps other types of biomolecules, between the autotroph and the heterotroph might happen in I. galbana-A. macleodii co-culture. The present work provides novel insights into the transcriptional consequences of I. galbana of mutualism with its heterotrophic bacterial partner, and mutually beneficial associations existing in I. galbana-A. macleodii might be explored to improve productivity and sustainability of aquaculture algal rearing systems.

20.
Cell Death Differ ; 28(1): 219-232, 2021 01.
Article En | MEDLINE | ID: mdl-32737443

ABSTRICT: LINC00941 is a novel lncRNA that has been found to exhibit protumorigenic and prometastatic behaviors during tumorigenesis. However, its role in metastatic CRC remains unknown. We aimed to investigate the functions and mechanisms of LINC00941 in CRC metastasis. LINC00941 was shown to be upregulated in CRC, and upregulated LINC00941 was associated with poor prognosis. Functionally, LINC00941 promoted migratory and invasive capacities and accelerated lung metastasis in nude mice. Mechanistically, LINC00941 activated EMT in CRC cells, as indicated by the increased expression of key molecular markers of cell invasion and metastasis (Vimentin, Fibronectin, and Twist1) and simultaneous decreased expression of the main invasion suppressors E-cadherin and ZO-1. LINC00941 was found to activate EMT by directly binding the SMAD4 protein MH2 domain and competing with ß-TrCP to prevent SMAD4 protein degradation, thus activating the TGF-ß/SMAD2/3 signaling pathway. Our data reveal the essential role of LINC00941 in metastatic CRC via activation of the TGF-ß/SMAD2/3 axis, which provides new insight into the mechanism of metastatic CRC and a novel potential therapeutic target for advanced CRC.


Colorectal Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Smad Proteins/metabolism , Animals , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Male , Mice , Mice, Inbred BALB C , Mice, Nude , RNA, Long Noncoding/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/pharmacology , Vimentin/metabolism
...