Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Article En | MEDLINE | ID: mdl-37557181

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Histones/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Signal Transduction , Cell Line, Tumor
2.
NPJ Precis Oncol ; 6(1): 56, 2022 Aug 16.
Article En | MEDLINE | ID: mdl-35974168

While cyclin-dependent kinase 4/6 (CDK4/6) inhibitors, including palbociclib, combined with endocrine therapy (ET), are becoming the standard-of-care for hormone receptor-positive/human epidermal growth factor receptor 2‒negative metastatic breast cancer, further mechanistic insights are needed to maximize benefit from the treatment regimen. Herein, we conducted a systematic comparative analysis of gene expression/progression-free survival relationship from two phase 3 trials (PALOMA-2 [first-line] and PALOMA-3 [≥second-line]). In the ET-only arm, there was no inter-therapy line correlation. However, adding palbociclib resulted in concordant biomarkers independent of initial ET responsiveness, with shared sensitivity genes enriched in estrogen response and resistance genes over-represented by mTORC1 signaling and G2/M checkpoint. Biomarker patterns from the combination arm resembled patterns observed in ET in advanced treatment-naive patients, especially patients likely to be endocrine-responsive. Our findings suggest palbociclib may recondition endocrine-resistant tumors to ET, and may guide optimal therapeutic sequencing by partnering CDK4/6 inhibitors with different ETs. Pfizer (NCT01740427; NCT01942135).

3.
Oncogene ; 38(21): 4125-4141, 2019 05.
Article En | MEDLINE | ID: mdl-30700828

The CDK4/6 inhibitor palbociclib reduces tumor growth by decreasing retinoblastoma (RB) protein phosphorylation and inducing cell cycle arrest at the G1/S phase transition. Palbociclib in combination with anti-hormonal therapy brings significant benefit to breast cancer patients. In this study, novel combination approaches and underlying molecular/cellular mechanisms for palbociclib were explored in squamous cell lung cancer (SqCLC), the second most common subtype of non-small cell lung cancer. While approximate 20% lung patients benefit from immunotherapy, most SqCLC patients who receive platinum-doublet chemotherapy as first-line treatment, which often includes a taxane, are still in need of more effective combination therapies. Our results demonstrated enhanced cytotoxicity and anti-tumor effect with palbociclib plus taxanes at clinically achievable doses in multiple SqCLC models with diverse cancer genetic backgrounds. Comprehensive gene expression analysis revealed a sustained disruption of pRB-E2F signaling by combination that was accompanied with enhanced regulation of pleiotropic biological effects. These included several novel mechanisms such as abrogation of G2/M and mitotic spindle assembly checkpoints, as well as impaired induction of hypoxia-inducible factor 1 alpha (HIF-1α). The decrease in HIF-1α modulated a couple key angiogenic and anti-angiogenic factors, resulting in an enhanced anti-angiogenic effect. This preclinical work suggests a new therapeutic opportunity for palbociclib in lung and other cancers currently treated with taxane based chemotherapy as standard of care.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bridged-Ring Compounds/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , E2F Transcription Factors/metabolism , Lung Neoplasms/drug therapy , Retinoblastoma Protein/metabolism , Taxoids/pharmacology , Angiogenesis Inhibitors/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Piperazines/pharmacology , Pyridines/pharmacology , Signal Transduction/drug effects
4.
Mol Cancer Ther ; 12(12): 2929-39, 2013 Dec.
Article En | MEDLINE | ID: mdl-24107449

Figitumumab (CP-751,871), a potent and fully human monoclonal anti-insulin-like growth factor 1 receptor (IGF1R) antibody, has been investigated in clinical trials of several solid tumors. To identify biomarkers of sensitivity and resistance to figitumumab, its in vitro antiproliferative activity was analyzed in a panel of 93 cancer cell lines by combining in vitro screens with extensive molecular profiling of genomic aberrations. Overall response was bimodal and the majority of cell lines were resistant to figitumumab. Nine of 15 sensitive cell lines were derived from colon cancers. Correlations between genomic characteristics of cancer cell lines with figitumumab antiproliferative activity revealed that components of the IGF pathway, including IRS2 (insulin receptor substrate 2) and IGFBP5 (IGF-binding protein 5), played a pivotal role in determining the sensitivity of tumors to single-agent figitumumab. Tissue-specific differences among the top predictive genes highlight the need for tumor-specific patient selection strategies. For the first time, we report that alteration or expression of the MYB oncogene is associated with sensitivity to IGF1R inhibitors. MYB is dysregulated in hematologic and epithelial tumors, and IGF1R inhibition may represent a novel therapeutic opportunity. Although growth inhibitory activity with single-agent figitumumab was relatively rare, nine combinations comprising figitumumab plus chemotherapeutic agents or other targeted agents exhibited properties of synergy. Inhibitors of the ERBB family were frequently synergistic and potential biomarkers of drug synergy were identified. Several biomarkers of antiproliferative activity of figitumumab both alone and in combination with other therapies may inform the design of clinical trials evaluating IGF1R inhibitors.


Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Receptor, IGF Type 1/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Cluster Analysis , DNA Copy Number Variations , Drug Synergism , Gene Expression Profiling , Humans , Inhibitory Concentration 50 , Mutation , Quantitative Trait Loci , Receptor, IGF Type 1/metabolism , Signal Transduction
5.
PLoS One ; 8(6): e67258, 2013.
Article En | MEDLINE | ID: mdl-23826249

PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide) mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs) in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids. Tumor spheroid cells exhibited CSC properties, including the capability for differentiation and self-renewal, higher tumorigenic potential and chemo-resistance. Genetic analysis using an OncoCarta™ panel revealed a PIK3CA (H1047R) mutation in these cells. Using a dual PI3K/mTOR inhibitor, PF-04691502, we then showed that blockage of the PI3K/mTOR pathway inhibited the in vitro proliferation of CSCs and in vivo xenograft tumor growth with manageable toxicity. Tumor growth inhibition in mice was accompanied by a significant reduction of phosphorylated Akt (pAKT) (S473), a well-established surrogate biomarker of PI3K/mTOR signaling pathway inhibition. Collectively, our data suggest that PF-04691502 exhibits potent anticancer activity in colorectal cancer by targeting both PIK3CA (H1047R) mutant CSCs and their derivatives. These results may assist in the clinical development of PF-04691502 for the treatment of a subpopulation of colorectal cancer patients with poor outcomes.


Antineoplastic Agents/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Colorectal Neoplasms/drug therapy , Mutation , Neoplastic Stem Cells/drug effects , Pyridones/pharmacology , Pyrimidines/pharmacology , Administration, Oral , Adult , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/metabolism , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Male , Mice, SCID , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
6.
Front Med ; 7(4): 462-76, 2013 Dec.
Article En | MEDLINE | ID: mdl-23820871

Evaluating the effects of novel drugs on appropriate tumor models has become crucial for developing more effective therapies that target highly tumorigenic and drug-resistant cancer stem cell (CSC) populations. In this study, we demonstrate that a subset of cancer cells with CSC properties may be enriched into tumor spheroids under stem cell conditions from a non-small cell lung cancer cell line. Treating these CSC-like cells with gemcitabine alone and a combination of gemcitabine and the novel CHK1 inhibitor PF-00477736 revealed that PF-00477736 enhances the anti-proliferative effect of gemcitabine against both the parental and the CSC-like cell populations. However, the CSC-like cells exhibited resistance to gemcitabine-induced apoptosis. Collectively, the spheroid-forming CSC-like cells may serve as a model system for understanding the mechanism underlying the drug resistance of CSCs and for guiding the development of better therapies that can inhibit tumor growth and eradicate CSCs.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm , Neoplastic Stem Cells/drug effects , Spheroids, Cellular/drug effects , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzodiazepinones/administration & dosage , Biomarkers, Tumor/metabolism , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Drug Synergism , Female , Humans , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , Pyrazoles/administration & dosage , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Cells, Cultured , Gemcitabine
7.
Genomics ; 102(3): 157-62, 2013 Sep.
Article En | MEDLINE | ID: mdl-23434628

The recently approved ALK kinase inhibitor crizotinib has demonstrated successful treatment of metastatic and late stage ALK fusion positive non-small cell lung cancer (NSCLC). However, the median duration of clinical benefit is ~10-11months due to the emergence of multiple and simultaneous resistance mechanisms in these tumors. Mutations in the ALK kinase domain confer resistance to crizotinib in about one-third of these patients. We developed a multiplex deep sequencing method using semiconductor sequencing technology to quickly detect resistance mutations within the ALK kinase domain from tumor biopsies. By applying a base-pair specific error-weighted mutation calling algorithm (BASCA) that we developed for this assay, genomic DNA analysis from thirteen relapsed patients revealed three known crizotinib resistance mutations, C1156Y, L1196M and G1269A. Our assay demonstrates robust and sensitive detection of ALK kinase mutations in NSCLC tumor samples and aids in the elucidation of resistance mechanisms pertinent to the clinical setting.


Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Lung Neoplasms/drug therapy , Mutation , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics , Algorithms , Anaplastic Lymphoma Kinase , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Crizotinib , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Neoplasm Recurrence, Local , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Sequence Analysis, DNA/methods
8.
Mol Cancer Ther ; 11(3): 710-9, 2012 Mar.
Article En | MEDLINE | ID: mdl-22222631

PF-03814735 is a novel, reversible inhibitor of Aurora kinases A and B that finished a phase I clinical trial for the treatment of advanced solid tumors. To find predictive biomarkers of drug sensitivity, we screened a diverse panel of 87 cancer cell lines for growth inhibition upon PF-03814735 treatment. Small cell lung cancer (SCLC) and, to a lesser extent, colon cancer lines were very sensitive to PF-03814735. The status of the Myc gene family and retinoblastoma pathway members significantly correlated with the efficacy of PF-03814735. Whereas RB1 inactivation, intact CDKN2A/p16, and normal CCND1/Cyclin D1 status are hallmarks of SCLC, activation or amplification of any of the three Myc genes (MYC, MYCL1, and MYCN) clearly differentiated cell line sensitivity within the SCLC panel. By contrast, we found that expression of Aurora A and B were weak predictors of response. We observed a decrease in histone H3 phosphorylation and polyploidization of sensitive lines, consistent with the phenotype of Aurora B inhibition. In vivo experiments with two SCLC xenograft models confirmed the sensitivity of Myc gene-driven models to PF-03814735 and a possible schedule dependence of MYC/c-Myc-driven tumors. Altogether our results suggest that SCLC and other malignancies driven by the Myc family genes may be suitable indications for treatment by Aurora B kinase inhibitors.


Biomarkers, Tumor/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/pharmacology , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Profiling , Genomics/methods , Histones/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Xenograft Model Antitumor Assays
9.
PLoS Pathog ; 6(12): e1001220, 2010 Dec 09.
Article En | MEDLINE | ID: mdl-21170360

Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.


Anti-HIV Agents/chemistry , Capsid Proteins/antagonists & inhibitors , Amino Acid Substitution , Anti-HIV Agents/pharmacology , Binding Sites , Capsid Proteins/genetics , Cell Line , Crystallography, X-Ray , HIV-1/drug effects , HIV-2/drug effects , Human Immunodeficiency Virus Proteins , Humans , Structure-Activity Relationship , Virus Replication/drug effects
10.
Antimicrob Agents Chemother ; 53(12): 5080-7, 2009 Dec.
Article En | MEDLINE | ID: mdl-19805571

A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.


Anti-HIV Agents/pharmacology , HIV-1/drug effects , HIV-1/metabolism , Virion/drug effects , Virion/metabolism , Anti-HIV Agents/chemistry , Blotting, Western , Capsid Proteins/metabolism , Cell Line , Cells, Cultured , HeLa Cells , Humans , Molecular Structure
11.
Antimicrob Agents Chemother ; 51(10): 3554-61, 2007 Oct.
Article En | MEDLINE | ID: mdl-17646410

More than 10(6) compounds were evaluated in a human immunodeficiency virus type 1 (HIV-1) high-throughput antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (UK-201844). UK-201844 exhibited antiviral activity against HIV-1 NL4-3 in MT-2 and PM1 cells, with 50% effective concentrations of 1.3 and 2.7 microM, respectively, but did not exhibit measurable antiviral activity against the closely related HIV-1 IIIB laboratory strain. UK-201844 specifically inhibited the production of infectious virions packaged with an HIV-1 envelope (Env), but not HIV virions packaged with a heterologous Env (i.e., the vesicular stomatitis virus glycoprotein), suggesting that the compound targets HIV-1 Env late in infection. Subsequent antiviral assays using HIV-1 NL4-3/IIIB chimeric viruses showed that HIV-1 Env sequences were critical determinants of UK-201844 susceptibility. Consistent with this, in vitro resistant-virus studies revealed that amino acid substitutions in HIV-1 Env are sufficient to confer resistance to UK-201844. Western analysis of HIV Env proteins expressed in transfected cells or in isolated virions showed that UK-201844 inhibited HIV-1 gp160 processing, resulting in the production of virions with nonfunctional Env glycoproteins. Our results demonstrate that UK-201844 represents the prototype for a unique HIV-1 inhibitor class that directly or indirectly interferes with HIV-1 gp160 processing.


Anti-HIV Agents/pharmacology , Benzeneacetamides/pharmacology , HIV Envelope Protein gp160/biosynthesis , HIV Envelope Protein gp160/drug effects , Piperidines/pharmacology , Alkynes , Benzoxazines/pharmacology , Blotting, Western , Cyclopropanes , Cytopathogenic Effect, Viral/drug effects , DNA, Recombinant/biosynthesis , DNA, Recombinant/genetics , Drug Resistance, Bacterial , HIV Core Protein p24/analysis , HIV Core Protein p24/biosynthesis , HIV-1/drug effects , HeLa Cells , Humans , Protein Processing, Post-Translational/drug effects , Virus Replication/drug effects
12.
Antimicrob Agents Chemother ; 49(9): 3833-41, 2005 Sep.
Article En | MEDLINE | ID: mdl-16127060

Antiviral screens have proved useful for the identification of novel human immunodeficiency virus type 1 (HIV-1) inhibitors. In this study, we describe an HIV-1 full replication (HIV-1 Rep) assay that incorporates all of the targets required for replication in T-cell lines, including the HIV-1 Vif gene. The HIV-1 Rep assay was designed to exhibit optimal sensitivity to late-stage as well as early-stage inhibitors to maximize the likelihood of identification of novel target antiviral compounds in a screen. In addition, the flexibility of the HIV-1 Rep assay allows the rapid evaluation of antiviral compounds against different virus strains in different T-cell lines without significant modification of the assay format. We demonstrate that the HIV-1 Rep assay exhibits characteristics (e.g., a favorable Z' value) compatible with high-throughput screening in a 384-well format. The utility of the HIV-1 Rep assay was demonstrated in a high-throughput screen of >10(6) compounds. To our knowledge, this study represents the first example of an HIV-1 antiviral screen that includes Vif as a functional target and was executed on an industrial scale.


Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Gene Products, vif/genetics , HIV-1/drug effects , Virus Replication/drug effects , HIV Core Protein p24/genetics , HeLa Cells , Humans , Likelihood Functions , Plasmids/genetics , vif Gene Products, Human Immunodeficiency Virus
13.
Antiviral Res ; 65(2): 107-16, 2005 Feb.
Article En | MEDLINE | ID: mdl-15708637

Antiviral high throughput screens remain a viable option for identifying novel target inhibitors. However, few antiviral screens have been reduced to practice on an industrial scale. In this study, we describe an HIV-1 dual reporter assay that allows for the simultaneous evaluation of the potential antiviral activities and cytotoxicities of compounds in a high throughput screen (HTS) format. We validate the assay with known HIV-1 inhibitors and show that the antiviral and cytotoxic activities of compounds are reproducibly measured under screening conditions. In addition, we show that the assay exhibits parameters (e.g., signal-to-background ratios and Z' coefficients) suitable for high throughout screening. In a pilot screen, we demonstrate that non-specific or cytotoxic compounds represent a significant fraction of the hits identified in an antiviral screen and that these false positives are identified and deprioritized by the HIV-1 dual reporter assay at the primary screening step. We propose that the HIV-1 dual reporter assay represents a novel approach to HIV-1 antiviral screening that allows for the effective execution of industrial scale HTS campaigns with significantly greater returns on resource investment when compared to previous methods.


Anti-HIV Agents/pharmacology , HIV-1/drug effects , Microbial Sensitivity Tests/methods , Animals , Cell Line , Genes, Reporter , HIV-1/genetics , HeLa Cells , Humans , Luciferases, Firefly/genetics , Microbial Sensitivity Tests/statistics & numerical data , Reproducibility of Results
...