Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Parasitol Res ; 123(4): 176, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38573530

Giardiasis is a common intestinal infection caused by Giardia duodenalis, which is a major economic and health burden for humans and livestock. Currently, a convenient and effective detection method is urgently needed. CRISPR/Cas12a-based diagnostic methods have been widely used for nucleic acid-based detection of pathogens due to their high efficiency and sensitivity. In this study, a technique combining CRISPR/Cas12a and RPA was established that allows the detection of G. duodenalis in faecal samples by the naked eye with high sensitivity (10-1 copies/µL) and specificity (no cross-reactivity with nine common pathogens). In clinical evaluations, the RPA-CRISPR/Cas12a-based detection assay detected Giardia positivity in 2% (1/50) of human faecal samples and 47% (33/70) of cattle faecal samples, respectively, which was consistent with the results of nested PCR. Our study demonstrated that the RPA-CRISPR/Cas12a technique for G. duodenalis is stable, efficient, sensitive, specific and has low equipment requirements. This technique offers new opportunities for on-site detection in remote and poor areas.


Giardia lamblia , Giardiasis , Humans , Animals , Cattle , Giardia lamblia/genetics , CRISPR-Cas Systems , Giardiasis/diagnosis , Giardiasis/veterinary , Giardia/genetics , Biological Assay
3.
Talanta ; 269: 125413, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38042139

Neospora caninum is a protozoan parasite that causes neosporosis in cattle, and leads to a high rate of abortion and severe financial losses. Rapid and accurate detection is particularly important for preventing and controlling neosporosis. In our research, a highly effective diagnostic technique based on the RPA-CRISPR/Cas system was created to successfully identify N. caninum against the Nc5 gene, fluorescent reporter system and the lateral flow strip (LFS) biosensor were exploited to display results. The specificity and sensitivity of the PRA-CRISPR/Cas12a assay were evaluated. We discovered that it was highly specific and did not react with any other pathogens. The limit of detection (LOD) for this technology was as low as one parasite per milliliter when employing the fluorescent reporter system, and was approximately ten parasites per milliliter based on the LFS biosensor and under blue or UV light. Meanwhile, the placental tissue samples were detected by our RPA-CRISPR/Cas12a detection platform were completely consistent with that of the nested PCR assay (59.4 %, 19/32). The canine feces were detected by our RPA-CRISPR/Cas12a detection platform were completely consistent with that of the nested PCR assay (8.6 %, 6/70). The RPA-CRISPR/Cas12a detection procedure was successfully finished in within 90 min and offers advantages of high sensitivity and specificity, speed and low cost. The technique was better suitable for extensive neosporosis screening in non-laboratory and resource-constrained locations. This study provided a new strategy for more rapid and portable identification of N. caninum.


Neospora , Female , Pregnancy , Animals , Dogs , Cattle , Neospora/genetics , CRISPR-Cas Systems , Placenta , Biological Assay , Coloring Agents , Recombinases , Nucleic Acid Amplification Techniques
4.
Parasitol Res ; 122(3): 739-747, 2023 Mar.
Article En | MEDLINE | ID: mdl-36600165

Toxoplasma gondii can infect a wide range of warm-blooded animals, causing a global toxoplasmosis zoonotic epidemic. Surface antigen 1 (SAG1) protein is expressed at the proliferative tachyzoite stage, whereas matrix antigen 1 (MAG1) is expressed at the bradyzoite and tachyzoite stages. These two proteins were found to perform protective roles in previous studies; however, their synergetic protective efficacy as a DNA vaccine against toxoplasmosis has not been clarified. In this study, we constructed recombinant pcDNA3.1( +)-TgMAG1 (pMAG1), pcDNA3.1( +)-TgSAG1 (pSAG1), and pcDNA3.1( +)-TgMAG1-TgSAG1 (pMAG1-SAG1) plasmids and administered them intramuscularly to immunize mice. The levels of anti-T. gondii IgG in serum and cytokines, such as Interleukin (IL)-4, IL-10, and Interferon (IFN)-γ, in splenocytes were measured using ELISA and the respective culture supernatants. Lethal doses of T. gondii (type I) RH strain tachyzoites were administered to immunized mice, and mortality was assessed. Conversely, mice infected with low doses of tachyzoites were monitored to determine their survival rates, and parasite burden analyses of the brains and livers were conducted. The bivalent TgMAG1 and TgSAG1 DNA vaccines exhibited excellent protective immunity against toxoplasmosis in mice, with higher serum IgG and splenocyte IFN-γ release levels, longer survival days, and reduced parasite burden in the brain and liver tissues (p < 0.05). These findings provide a new perspective for the development of T. gondii vaccines.


Protozoan Vaccines , Toxoplasma , Toxoplasmosis , Vaccines, DNA , Animals , Mice , Vaccines, DNA/genetics , Antigens, Protozoan , Protozoan Proteins/metabolism , Antigens, Surface/metabolism , Mice, Inbred BALB C , Toxoplasmosis/parasitology , Immunoglobulin G , Antibodies, Protozoan
6.
Parasit Vectors ; 15(1): 350, 2022 Sep 30.
Article En | MEDLINE | ID: mdl-36180879

BACKGROUND: Infection with Trichomonas vaginalis can lead to cervicitis, urethritis, pelvic inflammatory disease, prostatitis and perinatal complications and increased risk of HIV transmission. Here, we used an RPA-based CRISPR-Cas12a assay system in combination with a lateral flow strip (LFS) (referred to as RPA-CRISPR-Cas12a) to establish a highly sensitive and field-ready assay and evaluated its ability to detect clinical samples. METHODS: We developed a one-pot CRISPR-Cas12a combined with RPA-based field detection technology for T. vaginalis, chose actin as the target gene to design crRNA and designed RPA primers based on the crRNA binding site. The specificity of the method was demonstrated by detecting genomes from nine pathogens. To improve the usability and visualize the RPA-CRISPR-Cas12a assay results, both fluorescence detection and LFS readouts were devised. RESULTS: The RPA-CRISPR-Cas12a assay platform was completed within 60 min and had a maximum detection limit of 1 copy/µl and no cross-reactivity with Candida albicans, Mycoplasma hominis, Neisseria gonorrhoeae, Escherichia coli, Cryptosporidium parvum, G. duodenalis or Toxoplasma gondii after specificity validation. Thirty human vaginal secretions were tested by RPA-CRISPR-Cas12a assays, and the results were read by a fluorescent reporter and LFS biosensors and then compared to the results from nested PCR detection of these samples. Both RPA-CRISPR-Cas12a assays showed 26.7% (8/30) T. vaginalis-positive samples and a consistency of 100% (8/8). The RPA-CRISPR-Cas12a assays had a higher sensitivity than nested PCR (only seven T. vaginalis-positive samples were detected). CONCLUSIONS: The T. vaginalis RPA-CRISPR-Cas12a assay platform in this study can be used for large-scale field testing and on-site tests without the need for trained technicians or costly ancillary equipment.


Cryptosporidiosis , Cryptosporidium , Trichomonas vaginalis , Actins/genetics , CRISPR-Cas Systems , Cryptosporidiosis/genetics , Cryptosporidium/genetics , Female , Humans , Male , Nucleic Acid Amplification Techniques/methods , Pregnancy , Sensitivity and Specificity , Trichomonas vaginalis/genetics
7.
Acta Biochim Biophys Sin (Shanghai) ; 51(12): 1286-1292, 2019 Dec 13.
Article En | MEDLINE | ID: mdl-31761925

Leishmaniasis, caused by the intracellular protozoan parasite Leishmania, remains an important neglected tropical infectious disease. Infection may be lethal if untreated. Currently, the available drugs for the disease are limited by high toxicity and drug resistance. There is an urgent need to develop novel anti-leishmanial strategies. Antimicrobial peptides (AMPs) have been described as the first-line immune defense against pathogenic microbes and are being developed as emerging anti-parasitic therapies. In the present study, we showed the anti-leishmanial activity of the synthetic 4-amino acid peptide lysine, aspartic acid, glutamic acid, and leucine (KDEL), the endoplasmic reticulum retention sequence, against Leishmania tarentolae promastigote and amastigote. Different concentrations of KDEL peptides were incubated with promastigotes, MTT viability assay, and promastigote assay were carried out. Macrophages infected with GFP-transfected L. tarentolae promastigotes were incubated with KDEL peptides, and the anti-amastigote activity of the KDEL peptides was measured by fluorescence microscopy. The damage of L. tarentolae was observed by light microscopy and electron microscopy. The cell apoptosis was analyzed using the Annexin V-FITC/PI apoptosis detection kit and mitochondrial membrane potential assay kit and by flow cytometry. Results showed that L. tarentolae was susceptible to KDEL peptides in a dose-dependent manner, and KDEL peptides disrupted the surface membrane integrity and caused cell apoptosis. In our study, we found for the first time an AMP KDEL from Pseudomonas aeruginosa and proved its significant therapeutic potential as a novel anti-leishmanial drug.


Anti-Infective Agents/pharmacology , Leishmania/drug effects , Leishmaniasis/drug therapy , Peptides/pharmacology , Animals , Mice, Inbred BALB C , Pseudomonas aeruginosa/metabolism
...