Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Data ; 11(1): 573, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834587

RESUMEN

Obesity is accompanied by multiple known health risks and increased morbidity, and obese men display reduced reproductive health. However, the impact of obesity on the testes at the molecular levels remain inadequately explored. This is partially attributed to the lack of monitoring tools for tracking alterations within cell clusters in testes associated with obesity. Here, we utilized single-cell RNA sequencing to analyze over 70,000 cells from testes of obese and lean mice, and to study changes related to obesity in non-spermatogenic cells and spermatogenesis. The Testicular Library encompasses all non-spermatogenic cells and spermatogenic cells spanning from spermatogonia to spermatozoa, which will significantly aid in characterizing alterations in cellular niches and the testicular microenvironment during high-fat diet (HFD)-induced obesity. This comprehensive dataset is indispensable for studying how HFD disrupts cell-cell communication networks within the testis and impacts alterations in the testicular microenvironment that regulate spermatogenesis. Being the inaugural dataset of single-cell RNA-seq in the testes of diet-induced obese (DIO) mice, this holds the potential to offer innovative insights and directions in the realm of single-cell transcriptomics concerning male reproductive injury associated with HFD.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Análisis de la Célula Individual , Testículo , Transcriptoma , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Ratones , Testículo/metabolismo , Obesidad/genética , Obesidad/etiología , Espermatogénesis
2.
J Am Chem Soc ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767649

RESUMEN

Heterophase nanomaterials have sparked significant research interest in catalysis due to their distinctive properties arising from synergistic effects of different components and the formed phase boundary. However, challenges persist in the controlled synthesis of heterophase intermetallic compounds (IMCs), primarily due to the lattice mismatch of distinct crystal phases and the difficulty in achieving precise control of the phase transitions. Herein, orthorhombic/cubic Ru2Ge3/RuGe IMCs with engineered boundary architecture are synthesized and anchored on the reduced graphene oxide. The Ru2Ge3/RuGe IMCs exhibit excellent hydrogen evolution reaction (HER) performance with a high current density of 1000 mA cm-2 at a low overpotential of 135 mV. The presence of phase boundaries enhances charge transfer and improves the kinetics of water dissociation while optimizing the processes of hydrogen adsorption/desorption, thus boosting the HER performance. Moreover, an anion exchange membrane electrolyzer is constructed using Ru2Ge3/RuGe as the cathode electrocatalyst, which achieves a current density of 1000 mA cm-2 at a low voltage of 1.73 V, and the activity remains virtually undiminished over 500 h.

3.
Angew Chem Int Ed Engl ; 63(25): e202405173, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622784

RESUMEN

Constructing amorphous/intermetallic (A/IMC) heterophase structures by breaking the highly ordered IMC phase with disordered amorphous phase is an effective way to improve the electrocatalytic performance of noble metal-based IMC electrocatalysts because of the optimized electronic structure and abundant heterophase boundaries as active sites. In this study, we report the synthesis of ultrathin A/IMC PtPbBi nanosheets (NSs) for boosting hydrogen evolution reaction (HER) and alcohol oxidation reactions. The resulting A/IMC PtPbBi NSs exhibit a remarkably low overpotential of only 25 mV at 10 mA cm-2 for the HER in an acidic electrolyte, together with outstanding stability for 100 h. In addition, the PtPbBi NSs show high mass activities for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR), which are 13.2 and 14.5 times higher than those of commercial Pt/C, respectively. Density functional theory calculations demonstrate that the synergistic effect of amorphous/intermetallic components and multimetallic composition facilitate the electron transfer from the catalyst to key intermediates, thus improving the catalytic activity of MOR. This work establishes a novel pathway for the synthesis of heterophase two-dimensional nanomaterials with high electrocatalytic performance across a wide range of electrochemical applications.

4.
Acta Pharm Sin B ; 14(4): 1827-1844, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572103

RESUMEN

In the treatment of central nervous system disease, the blood-brain barrier (BBB) is a major obstruction to drug delivery that must be overcome. In this study, we propose a brain-targeted delivery strategy based on selective opening of the BBB. This strategy allows some simple bare nanoparticles to enter the brain when mixed with special opening material; however, the BBB still maintains the ability to completely block molecules from passing through. Based on the screening of BBB opening and matrix delivery materials, we determined that phospholipase A2-catalyzed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine liposomes can efficiently carry drugs into the brain immediately. At an effective dose, this delivery system is safe, especially with its effect on the BBB being reversible. This mix & act delivery system has a simple structure and rapid preparation, making it a strong potential candidate for drug delivery across the BBB.

5.
Nat Commun ; 15(1): 203, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172124

RESUMEN

Dysregulated hematopoietic niches remodeled by leukemia cells lead to imbalances in immunological mediators that support leukemogenesis and drug resistance. Targeting immune niches may ameliorate disease progression and tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive B-ALL (Ph+ B-ALL). Here, we show that T helper type 17 (Th17) cells and IL-17A expression are distinctively elevated in Ph+ B-ALL patients. IL-17A promotes the progression of Ph+ B-ALL. Mechanistically, IL-17A activates BCR-ABL, IL6/JAK/STAT3, and NF-kB signalling pathways in Ph+ B-ALL cells, resulting in robust cell proliferation and survival. In addition, IL-17A-activated Ph+ B-ALL cells secrete the chemokine CXCL16, which in turn promotes Th17 differentiation, attracts Th17 cells and forms a positive feedback loop supporting leukemia progression. These data demonstrate an involvement of Th17 cells in Ph+ B-ALL progression and suggest potential therapeutic options for Ph+ B-ALL with Th17-enriched niches.


Asunto(s)
Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Interleucina-17/genética , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Enfermedad Aguda
6.
Genes Nutr ; 19(1): 1, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243197

RESUMEN

BACKGROUND: Obese patients have been found to be susceptible to iron deficiency, and malabsorption of dietary iron is the cause of obesity-related iron deficiency (ORID). Divalent metal transporter 1 (DMT1) and ferroportin (FPN), are two transmembrane transporter proteins expressed in the duodenum that are closely associated with iron absorption. However, there have been few studies on the association between these two proteins and the increased susceptibility to iron deficiency in obese patients. Chronic inflammation is also thought to be a cause of obesity-related iron deficiency, and both conditions can have an impact on spermatogenesis and impair male reproductive function. Based on previous studies, transgenerational epigenetic inheritance through gametes was observed in obesity. RESULTS: Our results  showed that obese mice had decreased blood iron levels (p < 0.01), lower protein and mRNA expression for duodenal DMT1 (p < 0.05), but no statistically significant variation in mRNA expression for duodenal FPN (p > 0.05); there was an increase in sperm miR-135b expression (p < 0.05). Bioinformatics revealed ninety overlapping genes and further analysis showed that they were primarily responsible for epithelial cilium movement, fatty acid beta-oxidation, protein dephosphorylation, fertilization, and glutamine transport, which are closely related to spermatogenesis, sperm development, and sperm viability in mice. CONCLUSIONS: In obese mice, we observed downregulation of DMT1 in the duodenum and upregulation of miR-135b in the spermatozoa.

7.
Zygote ; 32(1): 1-6, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018398

RESUMEN

The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.


Asunto(s)
Dieta Alta en Grasa , Histonas , Humanos , Masculino , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Dieta Alta en Grasa/efectos adversos , Lisina/metabolismo , Obesidad/genética , Desarrollo Embrionario
8.
Int J Pharm ; 651: 123745, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145777

RESUMEN

Bacterial infections pose a huge threat to human health due to the inevitable emergency of drug resistance. Metal-organic frameworks (MOFs) consisting of metal ions and organic linkers, as emerging efficient antibacterial material, have the merits of structural flexibility and adjustable physicochemical property. With assistance of photosensitive agents as organic linkers, MOFs have great potential in antibacterial application through photocatalytic therapy by the generation of reactive oxygen species (ROS). However, the limited light use efficiency and short lifespan of ROS are two obstacles for their applications. Inspired by the semiconductor heterostructure in photocatalysis, we rationally design and precisely synthesize MOFs based heterostructures, in which the TiO2 nanoclusters are filled into the pores of Cu-TCPP nanosheets (i.e. TiO2 NCs@Cu-TCPP HSs). And the composite materials possess three-dimensional (3D) hierarchical architectures, which have advantages of large surface area, excellent light-absorbing ability and photocatalytic efficiency. Significantly, this novel material displays >99.99 % antibacterial efficiency against E. coli and S. aureus within 30 min and preserves the excellent antibacterial ability during reusing three times, which is superior to recently reported photocatalystic-based antibacterial materials. Our study provides new insights into the energy band engineering for enhanced antibacterial performance, paving a way for designing advanced clinical wound dressings.


Asunto(s)
Escherichia coli , Estructuras Metalorgánicas , Humanos , Especies Reactivas de Oxígeno , Staphylococcus aureus , Vendajes , Antibacterianos/farmacología , Estructuras Metalorgánicas/farmacología
9.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38006153

RESUMEN

With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have become of increasing interest. Traditionally, higher filler fractions are required to obtain a high thermal conductivity, but this leads to a decrease in the mechanical properties of the composites and increases the cost. In this study, silicon nitride nanowires (Si3N4NWs) with high aspect ratios were successfully prepared by a modified carbothermal reduction method, which was further combined with AlN particles to prepare the epoxy-based composites. The results showed that the Si3N4NWs were beneficial for constructing a continuous thermal conductive pathway as a connecting bridge. On this basis, an aligned three-dimensional skeleton was constructed by the ice template method, which further favored improving the thermal conductivity of the composites. When the mass fraction of Si3N4NWs added was 1.5 wt% and the mass fraction of AlN was 65 wt%, the composites prepared by ice templates reached a thermal conductivity of 1.64 W·m-1·K-1, which was ~ 720% of the thermal conductivity of the pure EP (0.2 W·m-1·K-1). The enhancement effect of Si3N4NWs and directional filler skeletons on the composite thermal conductivity were further demonstrated through the actual heat transfer process and finite element simulations. Furthermore, the thermal stability and mechanical properties of the composites were also improved by the introduction of Si3N4NWs, suggesting that prepared composites exhibit broad prospects in the field of thermal management.

10.
Transpl Immunol ; 80: 101895, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37414267

RESUMEN

Post-transplant lymphoproliferative disorder (PTLD) is a condition in which patients experience the unrestrained proliferation of B cells as a consequence of impaired immune surveillance, almost always as a consequence of Epstein-Barr virus (EBV) infection. It remains one of the most serious potential complications that patients can experience after undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). While treatment with rituximab can significantly improve the prognosis of individuals with EBV-PTLD, those patients in whom rituximab fails to provide appreciable clinical benefit generally exhibit very poor outcomes. In the present report, we describe the case of an EBV-PTLD patient who was successfully treated with blinatumomab and received maintenance therapy consisting of venetoclax combined with azacytidine (AZA). The present case highlights the potential utility of blinatumomab as an effective treatment option for individuals with high-risk EBV-PTLD, although further explanation of the optimal dosing and treatment duration is warranted in the future.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trasplante de Células Madre Hematopoyéticas , Trastornos Linfoproliferativos , Humanos , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Rituximab/uso terapéutico , Herpesvirus Humano 4 , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trastornos Linfoproliferativos/tratamiento farmacológico , Trastornos Linfoproliferativos/etiología
11.
ACS Appl Mater Interfaces ; 15(27): 32885-32894, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37392172

RESUMEN

As the rapid development of advanced foldable electronic devices, flexible and insulating composite films with ultra-high in-plane thermal conductivity have received increasing attention as thermal management materials. Silicon nitride nanowires (Si3N4NWs) have been considered as promising fillers for preparing anisotropic thermally conductive composite films due to their extremely high thermal conductivity, low dielectric properties, and excellent mechanical properties. However, an efficient approach to synthesize Si3N4NWs in a large scale still need to be explored. In this work, large quantities of Si3N4NWs were successfully prepared using a modified CRN method, presenting the advantages of high aspect ratio, high purity, and easy collection. On the basis, the super-flexible PVA/Si3N4NWs composite films were further prepared with the assistance of vacuum filtration method. Due to the highly oriented Si3N4NWs interconnected to form a complete phonon transport network in the horizontal direction, the composite films exhibited a high in-plane thermal conductivity of 15.4 W·m-1·K-1. The enhancement effect of Si3N4NWs on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the Si3N4NWs enabled the composite film presenting good thermal stability, high electrical insulation, and excellent mechanical strength, which was beneficial for thermal management applications in modern electronic devices.

12.
Drug Deliv ; 30(1): 2219869, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37309122

RESUMEN

Messenger RNA (mRNA) has become one of the most potential drugs in recent years. However, efficient and safe delivery of fragile and easily degradable mRNA is a major challenge. Appropriate delivery system (DS) determines the final effect of mRNA. Cationic lipids play a crucial and decisive role in the entire DS, but also cause huge biosafety problems due to the high toxicity. In this study, a new DS for mRNA delivery that combines negatively charged phospholipids was developed in order to neutralize the positive charge and thus increase the safety. Further, the factors affecting mRNA transfection from cell to animal were investigated. The mRNA DS with optimum condition of lipid composition, proportions, structure, and transfection time was synthesized. Adding an appropriate amount of the anionic lipid to liposomes could increase the safety while maintaining the original transfection efficiency. For transporting mRNA in vivo, requirements regarding the mRNA encapsulation and releasing rate should be further considered to optimize DS design and preparation.


Asunto(s)
Liposomas , Fosfolípidos , Animales , Transfección , Transporte Biológico , ARN Mensajero
13.
Cell Metab ; 35(5): 742-757.e10, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37040763

RESUMEN

Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Fibrosis , Metabolismo de los Lípidos , Primates
14.
Methods Mol Biol ; 2647: 169-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37041334

RESUMEN

Somatic cell nuclear transfer (SCNT) is a technology that enables differentiated somatic cells to acquire a totipotent state, thus making it of great value in developmental biology, biomedical research, and agricultural applications. Rabbit cloning associated with transgenesis has the potential to improve the applicability of this species for disease modeling, drug testing, and production of human recombinant proteins. In this chapter, we introduce our SCNT protocol for the production of live cloned rabbits.


Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Animales , Conejos , Humanos , Clonación de Organismos/métodos , Diferenciación Celular , Técnicas de Transferencia de Gen
15.
Genes (Basel) ; 14(3)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36980830

RESUMEN

Obesity is a metabolic disorder resulting from behavioral, environmental and heritable causes, and can have a negative impact on male reproduction. There have been few experiments in mice, rats, and rabbits on the effects of obesity on reproduction, which has inhibited the development of better treatments for male subfertility caused by obesity. Nonhuman primates are most similar to human beings in anatomy, physiology, metabolism, and biochemistry and are appropriate subjects for obesity studies. In this investigation, we conducted a transcriptome analysis of the testes of cynomolgus monkeys on high-fat, high-fructose, and cholesterol-rich diets to determine the effect of obesity on gene expression in testes. The results showed that the testes of obese monkeys had abnormal morphology, and their testes transcriptome was significantly different from that of non-obese animals. We identified 507 differentially abundant genes (adjusted p value < 0.01, log2 [FC] > 2) including 163 up-regulated and 344 down-regulated genes. Among the differentially abundant genes were ten regulatory genes, including IRF1, IRF6, HERC5, HERC6, IFIH1, IFIT2, IFIT5, IFI35, RSAD2, and UBQLNL. Gene ontology (GO) and KEGG pathway analysis was conducted, and we found that processes and pathways associated with the blood testes barrier (BTB), immunity, inflammation, and DNA methylation in gametes were preferentially enriched. We also found abnormal expression of genes related to infertility (TDRD5, CLCN2, MORC1, RFX8, SOHLH1, IL2RB, MCIDAS, ZPBP, NFIA, PTPN11, TSC22D3, MAPK6, PLCB1, DCUN1D1, LPIN1, and GATM) and down-regulation of testosterone in monkeys with dietetic obesity. This work not only provides an important reference for research and treatment on male infertility caused by obesity, but also valuable insights into the effects of diet on gene expression in testes.


Asunto(s)
Obesidad , Testículo , Macaca fascicularis , Transcriptoma , Obesidad/metabolismo , Alimentación Animal , Testículo/metabolismo , Animales , Regulación de la Expresión Génica , Testosterona/metabolismo
16.
ACS Appl Mater Interfaces ; 15(1): 2124-2133, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36576869

RESUMEN

With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have attracted increasing attention. For regular ceramic particles as fillers, it is necessary to achieve the highest filling fraction to obtain high thermal conductivity, yet leading to higher production cost and reduced mechanical properties. In this paper, AlN whiskers with a high aspect ratio were successfully prepared using a modified direct nitriding method, which was further paired with AlN particles as fillers to prepare the AlN/epoxy composites. It is indicated that AlN whiskers could form bridging links between AlN particles, which favored the establishment of thermal pathways inside the polymer matrix. On this basis, we constructed the 3D AlN skeletons as a thermal conductivity pathway by the freeze-casting method, which could further enhance the thermal conductivity of the composites. The synergistic enhancement effect of 1D AlN whiskers and directional filler skeletons on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the experimental results showed that the addition of one-dimensional fillers could also effectively improve the thermal stability and mechanical properties of the composites, which was beneficial for preparing high-performance TIMs.

17.
Angew Chem Int Ed Engl ; 62(4): e202213351, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36357325

RESUMEN

The direct electrochemical nitric oxide reduction reaction (NORR) is an attractive technique for converting NO into NH3 with low power consumption under ambient conditions. Optimizing the electronic structure of the active sites can greatly improve the performance of electrocatalysts. Herein, we prepare body-centered cubic RuGa intermetallic compounds (i.e., bcc RuGa IMCs) via a substrate-anchored thermal annealing method. The electrocatalyst exhibits a remarkable NH4 + yield rate of 320.6 µmol h-1 mg-1 Ru with the corresponding Faradaic efficiency of 72.3 % at very low potential of -0.2 V vs. reversible hydrogen electrode (RHE) in neutral media. Theoretical calculations reveal that the electron-rich Ru atoms in bcc RuGa IMCs facilitate the adsorption and activation of *HNO intermediate. Hence, the energy barrier of the potential-determining step in NORR could be greatly reduced.

18.
Mol Cell Biochem ; 478(3): 503-516, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35916967

RESUMEN

The purpose of this paper was to explore the role of circ_0056618 and associated mechanisms in colorectal cancer (CRC). The expression of circ_0056618, proline rich and Gla domain 4 (PRRG4) mRNA and miR-411-5p was measured by quantitative real-time PCR (qPCR).The protein levels of PRRG4 and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. Cell proliferation was assessed by cell counting kit-8, EdU, and colony formation assays. Cell migration and invasion were assessed by transwell assay. Cell apoptosis was detected by flow cytometry assay. The putative relationship between miR-411-5p and circ_0056618 or PRRG4 was verified by dual-luciferase reporter assay. The effects of circ_0056618 on tumor growth in vivo were determined by animal study. Circ_0056618 and PRRG4 was upregulated, while miR-411-5p was downregulated in CRC tumor tissues and cells. Circ_0056618 knockdown or PRRG4 knockdown inhibited CRC cell proliferation, migration/invasion, EMT, and survival. Circ_0056618 positively modulated PRRG4 expression by targeting miR-411-5p. MiR-411-5p absence or PRRG4 overexpression could rescue circ_0056618 knockdown-induced inhibition on proliferation, migration/invasion, and EMT in CRC cells. Animal assay showed circ_0056618 knockdown impeded tumor growth in vivo. Circ_0056618 promoted CRC growth and development by upregulating PRRG4 expression via competitively targeting miR-411-5p.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Apoptosis , Western Blotting , Movimiento Celular , Proliferación Celular
19.
Materials (Basel) ; 15(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36499807

RESUMEN

Infrared thermal reflective coating is an effective material to reduce building energy consumption and carbon emission. In this work, needle-shaped-rutile-shell-coated hollow glass microbeads (HGM) were prepared by surface modification of HGM and thermohydrolysis of TiCl4, and the possible shell formation mechanism was also proposed. The near infrared (NIR) reflectance of the coated HGM reached 93.3%, which could be further increased to 97.3% after the rutile shell crystallinity was improved by heat treatment. Furthermore, HGM/styrene-acrylic composite reflective coating was prepared on the surface of gypsum board by facile blending and coating methods, and the thermal insulation performance was measured by an indigenously designed experimental heat set-up. The results show that the composite coating prepared by HGM coated with rutile shell shows better NIR reflectance and thermal insulation performance than that prepared by pure organic coating and uncoated HGM. Meanwhile, it also shows better surface hydrophobicity, which is conducive to long-term and stable infrared reflection performance.

20.
Dev Cell ; 57(24): 2745-2760.e6, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36493772

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) give rise to the blood system and maintain hematopoiesis throughout the human lifespan. Here, we report a transcriptional census of human bone-marrow-derived HSPCs from the neonate, infant, child, adult, and aging stages, showing two subpopulations of multipotent progenitors separated by CD52 expression. From birth to the adult stage, stem and multipotent progenitors shared similar transcriptional alterations, and erythroid potential was enhanced after the infant stage. By integrating transcriptome, chromatin accessibility, and functional data, we further showed that aging hematopoietic stem cells (HSCs) exhibited a bias toward megakaryocytic differentiation. Finally, in comparison with the HSCs from the cord blood, neonate bone-marrow-derived HSCs were more quiescent and had higher long-term regeneration capability and durable self-renewal. Taken together, this work provides an integral transcriptome landscape of HSPCs and identifies their dynamics in post-natal steady-state hemopoiesis, thereby helping explore hematopoiesis in development and diseases.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Niño , Humanos , Recién Nacido , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Lactante , Adulto , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...