Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 12(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147813

RESUMEN

In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus-host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.


Asunto(s)
Interacciones Microbiota-Huesped/genética , MicroARNs/genética , Spumavirus/genética , Replicación Viral , Animales , Bovinos , Línea Celular , Simulación por Computador , Interacciones Huésped-Patógeno , Virus Espumoso de los Simios/genética , Spumavirus/fisiología , Secuencias Repetidas Terminales
2.
Virus Genes ; 54(4): 550-560, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29855776

RESUMEN

Foamy viruses are unconventional and complex retroviruses distinct from the other members of the Retroviridae family. Currently, no disease has been firmly linked to persistent foamy virus infection of their cognate host including simians, bovines, felines, and equines or upon zoonotic transmission of different simian foamy viruses to humans. Bovine and simian foamy viruses have been recently shown to encode a RNA polymerase-III-driven micro RNA cluster which likely modulates and regulates host-virus interactions at different levels. Using sub-genomic bovine foamy virus micro RNA expression plasmids and dual luciferase reporter assays as readout, the requirements for expression and processing of the bovine foamy virus micro RNAs have been analyzed. Here, we report that the minimal BFV micro RNA cassette is significantly weaker than a U6 promoter-based construct and strongly suppressed by flanking sequences. The primary micro RNA sequence can be manipulated and chimerized as long as the dumbbell-like folding of the primary micro RNA is maintained. Since more subtle changes are associated with reduced functionality, the overall structure and shape, but possibly individual elements and residues also, are important for the expression and processing of the bovine foamy virus micro RNAs.


Asunto(s)
Regulación Viral de la Expresión Génica , Secuencias Invertidas Repetidas , MicroARNs/química , MicroARNs/genética , ARN Viral , Infecciones por Retroviridae/virología , Spumavirus/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Orden Génico , Genes Reporteros , Genoma Viral , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas
3.
Biotechnol Lett ; 37(3): 551-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25388451

RESUMEN

A perturbed microenvironment is at the core of carcinogenesis. Here, we used a 2D cellular automata model to simulate how cancers are generated in epithelial tissue. We applied several mathematical rules to simulate tissue renewal and surrounding cell control. Under the simulation, we showed that the average value of surrounding normal cells could be an indicator for the tissue normalizing capacity (TNC). Further, we found the incidence of carcinogenesis correlated inversely with the TNC. Interestingly, we also found that multi-round mutagenesis could gradually disturb the TNC when compared to one-round mutagenesis: cancer incidence increased significantly compared to one-round mutagenesis. Our model suggests that the genetic alterations (mutations) by themselves were not sufficient to initiate cancer. The perturbation of TNC could be a key process leading to carcinogenesis.


Asunto(s)
Carcinogénesis/patología , Simulación por Computador , Epitelio/patología , Epitelio/fisiología , Mutagénesis
4.
Int J Gynecol Cancer ; 23(8): 1357-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24257549

RESUMEN

BACKGROUND: Progress has been made against early events of malignant transformation and drug resistance associated with epithelial ovarian cancer; uncontrolled metastases, however, still accounts for most patient deaths. The molecular mechanism that regulates the process of epithelial ovarian cancer metastases is not yet clearly understood. The purpose of this study was to investigate the effect of down-regulating the transcriptional repressor zinc-finger E-box-binding homeobox 1 (ZEB1) on an epithelial-mesenchymal transition (EMT) of human ovarian cancer SKOV3 cell line in vitro and in vivo. METHODS: The human ovarian cancer cells SKOV3 and HO8910 were transfected with an expression vector-based small hairpin RNA (shRNA) targeting ZEB1 (shZEB1), and the stably transfected cells were selected. Colony-forming, wound-healing, and cellular migration assays were respectively used. The tumorigenicity of shZEB1-SKOV3 was also evaluated in mice. RESULTS: The shZEB1-SKOV3 and shZEB1-HO8910 cells showed a lower level of ZEB1 expression and weaker cell migration than the control cells. Moreover, down-regulating ZEB1 expression with shRNA in the cells enhanced the expression of miR-200c that acted as a tumor suppressor to inhibit the epithelial-mesenchymal transition of shZEB1-SKOV3 cells and to block shZEB1-SKOV3 cell metastasis in vivo. The shRNA-mediated down-regulation ZEB1 in SKOV3 cells significantly decreased the tumor growth in the xenograft mice. CONCLUSION: The shZEB1-mediated down-regulation of the ZEB1 expression in the SKOV3 cells may be considered for future clinical trials.


Asunto(s)
Adenocarcinoma/metabolismo , Transición Epitelial-Mesenquimal , Proteínas de Homeodominio/metabolismo , Neoplasias Ováricas/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA