Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(25): 31936-31949, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869429

RESUMEN

Minimally invasive embolization greatly decreases the mortality resulting from vascular injuries while still suffering from a high risk of recanalization and systematic thrombosis due to the intrinsic hydrophobicity and poor adhesion of the clinically used liquid embolic agent of Lipiodol. In this study, a shape self-adaptive liquid embolic agent was developed by mixing biocompatible poly(acrylic acid) (PAA), two-dimensional magnesium-aluminum layered double hydroxide (LDH), and poly(ethylene glycol)200 (PEG200). Upon contact with blood, the injectable PAA-LDH@PEG200 would quickly absorb water to form an adhesive and mechanically strong PAA-LDH thin hydrogel within 5 s, which could firmly adhere to the blood vessel wall for ultrafast and durable embolization. In addition, benefiting from the "positively charged nucleic center effect" of LDH nanosheets, the liquid PAA-LDH@PEG200 could avoid vascular distension by PAA overexpansion and possess high shock-resistant mechanical strength from the blood flow. Furthermore, both in vitro and in vivo embolization experiments demonstrated the complete embolic capacity of liquid PAA-LDH@PEG200 without the occurrence of recanalization for 28 days and also the great potential to act as a platform to couple with chemotherapeutic drugs for the minimized transcatheter arterial chemoembolization (TACE) treatment of VX2 tumors without recurrence for 18 days. Thus, liquid PAA-LDH@PEG200 developed here possesses great potential to act as a shape self-adaptive liquid embolic agent for ultrafast and durable vascular embolization.


Asunto(s)
Polietilenglicoles , Animales , Polietilenglicoles/química , Ratones , Resinas Acrílicas/química , Embolización Terapéutica/métodos , Humanos , Hidróxidos/química , Hidróxidos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Aluminio/química
2.
Adv Healthc Mater ; 13(4): e2302576, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897434

RESUMEN

Intestinal commensal microbiota dysbiosis and immune dysfunction are significant exacerbating factors in inflammatory bowel disease (IBD). To address these problems, Pluronic F-127-coated tungsten diselenide (WSe2 @F127) nanozymes are developed by simple liquid-phase exfoliation. The abundant valence transitions of elemental selenium (Se2- /Se4+ ) and tungsten (W4+ /W6+ ) enable the obtained WSe2 @F127 nanozymes to eliminate reactive oxygen/nitrogen species. In addition, the released tungsten ions are capable of inhibiting the proliferation of Escherichia coli. In a model of dextran sodium sulfate-induced colitis, WSe2 @F127 nanozymes modulate the gut microbiota by increasing the abundance of bacteria S24-7 and significantly reducing the abundance of Enterobacteriaceae. Moreover, WSe2 @F127 nanozymes inhibit T-cell differentiation and improve intestinal immune barrier function in a model of Crohn's disease. The WSe2 @F127 nanozymes effectively alleviate IBD by reducing oxidative stress damage, modulating intestinal microbial populations, and remodeling the immune barrier.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Polietilenos , Polipropilenos , Animales , Ratones , Tungsteno/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Escherichia coli , Especies Reactivas de Oxígeno , Diferenciación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA