Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cancer Manag Res ; 11: 3721-3739, 2019.
Article En | MEDLINE | ID: mdl-31118792

Background: Genetic factors play an important role in colorectal cancer (CRC) risk, yet the prevalence and spectrum of germline cancer susceptibility gene mutations among unselected Chinese CRC patients is largely undetermined. Methods: We performed next-generation sequencing with a 73-genes panel and analyzed the prevalence and spectrum of germline mutations in 618 unselected Chinese CRC patients. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations. Clinical characteristics were assessed by age and mutation status. Protein expressions and interactions of MLH1 missense variants were evaluated by western blot and co- immunoprecipitation. Results: Overall, 112 (18.1%) of 618 unselected Chinese CRC patients were found to carry at least one pathogenic or likely pathogenic variant (totaling 97 variants), including 70 (11.3%) Lynch syndrome (LS) mutation carriers and 42 (6.8%) non-LS mutation carriers. LS mutation carriers were significantly younger at CRC diagnosis and were more likely to have right-sided, poorly differentiated, early stage, high-frequency microsatellite instability (MSI-H) or dMMR CRC and a family history of cancer compared with noncarriers. Non-LS mutation carriers were more likely to be proficient mismatch repair (pMMR) than noncarriers (p=0.039). We found four clinical variables (gender, tumor histological stage, cancer stage and mutation status) that showed significant differences between patients younger and older than 50 years old. Higher mutation rates were found in patients under 50 years old (p=0.017). Thirty-three novel variants were discovered and evaluated as pathogenic mutations by our study. Conclusion: Given the high frequency and wide spectrum of mutations, genetic testing with a multigene panel should be considered for all Chinese CRC patients under 50 years old and is also needed to determine whether a gene is associated with CRC susceptibility and to promote clinical translation.

2.
Huan Jing Ke Xue ; 33(10): 3535-41, 2012 Oct.
Article Zh | MEDLINE | ID: mdl-23233985

For efficient biological treatment of naphthalene in the industrial wastewater, activated anaerobic sludge was collected from a wastewater treatment plant of petroleum industry, and domesticated with naphthalene, naphthalene and lactate as electron donors, respectively. When the removal efficiency of naphthalene reached more than 90% in a domestication cycle, degradation kinetics were investigated in batch reactions with naphthalene, naphthalene and lactate as electron donors, respectively. Meanwhile, the microbial DNA was extracted from the sludge with high naphthalene removal efficiency, the 16S rDNA clone library was built up, and the bacterial community was analyzed. The results indicated that the degradation rate of naphthalene in reaction with naphthalene as the sole electron donor was much lower than that with naphthalene and lactate as electron donors. In both domestication modes, the naphthalene concentration and the time followed the first order reaction kinetics model and the kinetic constant K were 3.5 x 10(-3) h(-1) and 16 x 10(-3) h(-1), respectively. In addition, phylogenetic analysis indicated that the bacterial communities in naphthalene and lactate co-metabolism sludge were mainly composed of Deltaproteobacteria, Thermotogae, Bacteroidetes, Chloroflexi and Unclassified bacteria. Deltaproteobacteria was the main phylum in the sludge. In mature anaerobic activated sludge, Desulfobulbus sp. and Kosmotoga accounted for 24.2% and 21.0%, respectively. Smithella, Syntrophobacter and Levilinea were also found in the bioreactor. The study of the bacteria diversity in the anaerobic sludge is conducive to the optimization of reaction conditions for efficient removal of naphthalene.


Naphthalenes/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods , Wastewater/chemistry , Anaerobiosis , Bacteroidetes/growth & development , Bacteroidetes/metabolism , Biodegradation, Environmental , Biodiversity , Bioreactors/microbiology , Chloroflexi/growth & development , Chloroflexi/metabolism , Deltaproteobacteria/growth & development , Deltaproteobacteria/metabolism , Naphthalenes/isolation & purification
...