Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 367: 122011, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094415

RESUMEN

Photosynthetic carbon sequestration and microbial carbon metabolism are major processes of algae-bacteria interactions, affecting pollutant degradation as well as fundamental biogeochemical cycles in aquatic systems. Human-induced land-use changes greatly alter the molecular composition and input of terrestrial dissolved organic matter (DOM) in inland lakes. However, how the origin of DOM leads to varying effects on phycosphere microbial communities or molecular composition of DOM, e.g., via carbon metabolism, has been little studied in freshwater. Here, we incubated the cyanobacterium Microcystis aeruginosa and a bacterial community from natural lakes to establish an alga-bacteria model system. This allowed us to investigate how DOM from different sources affects phycosphere microbial diversity and DOM diversification. We showed that Suwannee River fulvic acid (SRFA), Suwannee River natural organic matter (SRNOM) and cropland lake DOM promote algal growth, whereas DOM from an urban lake inhibits algal growth. Algal metabolites and DOM together shaped the chemotaxis response of phycosphere communities. High-resolution mass spectrometry analysis demonstrated that DOM chemo-diversity tended to become uniform after interactions of diverse DOM sources with the algae-bacteria symbiosis system. Molecular thermodynamic analysis of DOM based on a substrate-explicit model further verified that microbial interactions render DOM less bioavailable and thus increase recalcitrant DOM formation. Metabolome analysis uncovered that DOM addition intensifies metabolic pathways related to labile and recalcitrant DOM utilization (mainly lignin/carboxyl-rich alicyclic molecule (CRAM)-like DOM, unsaturated hydrocarbon), whereby cofactor and vitamin metabolism represented an extremely strong activity in all metabolic pathways. Our results highlight covariation and interactions of DOM with microbial metabolism at the molecular level and expands our understanding of microbially mediated DOM shaping aquatic carbon cycling.


Asunto(s)
Carbono , Lagos , Lagos/microbiología , Carbono/metabolismo , Humanos , Benzopiranos , Bacterias/metabolismo
2.
Food Chem ; 458: 140187, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950510

RESUMEN

We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.


Asunto(s)
Cisteína , Enzimas Inmovilizadas , Lipasa , Lipooxigenasa , Aceite de Soja , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Aceite de Soja/química , Cisteína/química , Lipooxigenasa/química , Lipooxigenasa/metabolismo , Biocatálisis , Ácidos Linoleicos/química , Peróxidos Lipídicos
3.
Environ Sci Technol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904350

RESUMEN

The frequency and intensity of global wildfires are escalating, leading to an increase in derived pyrogenic dissolved organic matter (pyDOM), which potentially influences the riverine carbon reservoir and poses risks to drinking water safety. However, changes in pyDOM properties as it traverses through soil to water bodies are highly understudied due to the challenges of simulating such processes under laboratory conditions. In this study, we extracted soil DOM along hillslope gradients and soil depths in both burned and unburned catchments post wildfire. Using high-resolution mass spectrometry and a substrate-explicit model, we observed significant increases in the relative abundance of condensed aromatics (ConAC) and tannins in wildfire-affected soil DOM. Wildfire-affected soil DOM also displayed a broader spectrum of molecular and thermodynamic properties, indicative of its diverse composition and reactivity. Furthermore, as the fire-induced weakening of topsoil microbial reprocessing abilities hindered the transformation of plant-derived DOM, the relative abundance of lignin-like compounds increased with soil depth in the fire regions. Meanwhile, the distribution of shared molecular formulas along the hillslope gradient (from shoulder to toeslope) exhibited analogous patterns in both burned and unburned catchments. Although there was an increased prevalence of ConAC and tannin in the burned catchments, the relative abundance of these fractions diminished along the hillslope in all three catchments. Based on the substrate-explicit model, the biodegradability exhibited by wildfire-affected DOM fractions offers the possibility of its conversion along hillslopes. Our findings reveal the spatial distribution of DOM properties after a wildfire, facilitating accurate evaluation of dissolved organic carbon composition involved in the watershed-scale carbon cycle.

4.
Sci Total Environ ; 923: 171465, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453086

RESUMEN

Dissolved organic matter (DOM) is one of the most important fluxes in the global carbon cycle but its response to light exposure remains unclear at a molecular-level. The chemical response of DOM to light should vary with its molecular composition and environmental conditions while some basic hypotheses are still unclear, such as the balance between photobleaching and photo-humification and the question of oxidative properties. Here we exposed aquatic DOM from diverse freshwaters impacted by different levels of anthropogenic activity and algal exudates to environmentally-realistic light conditions. We found that photobleaching occurred in DOM with relatively high initial humic content producing low H/C molecules, whereas DOM with low initial humic content was humified. DOM pools with relatively high initial saturation and low aromaticity were prone to transform towards more unsaturated molecular formulae and high H/C molecules with a distinct decrease of bioavailability. Photo-transformation was mainly influenced by reactive intermediates, with reactive oxygen species (ROS) playing a dominant role in humification when the initial humus content of DOM was high. In contrast, for algal DOM with high protein content, it was likely that the autoxidation of excited state DOM was more important than indirect oxidation involving ROS. Our results reveal how photo-transformation patterns depend on the initial composition of DOM and provide new insights into the role of photochemical processes in biogeochemical cycling of DOM.

5.
Chemosphere ; 350: 141175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211788

RESUMEN

PAHs has shown worldwide accumulation and causes a significant environmental problem especially in saline and hypersaline environments. Moderately halophilic bacteria could be useful for the bioremediation of PAH pollution in hypersaline environments. Pelagerythrobacter sp. N7 was isolated from the PAH-degrading consortium 5H, which was enriched from mixed saline soil samples collected in Shanxi Province, China. 16S rRNA in the genomic DNA revealed that strain N7 belonged to Pelagerythrobacter. Strain N7 exhibited a high tolerance to a wide range of salinities (1-10%) and was highly efficient under neutral to weak alkaline conditions (pH 6-9). The whole genome of strain N7 was sequenced and analyzed, revealing an abundance of catabolic genes. Using the whole genome information, we conducted preliminary research on key enzymes and gene clusters involved in the upstream and downstream PAH degradation pathways of strain N7, thereby inferring its degradation pathway for phenanthrene and naphthalene. This study adds to our understanding of PAH degradation in hypersaline environments and, for the first time, identifies a Pelagerythrobacter with PAH-degrading capability. Strain N7, with its high efficiency in phenanthrene degradation, represents a promising resource for the bioremediation of PAHs in hypersaline environments.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , ARN Ribosómico 16S/genética , Fenantrenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Archaea/metabolismo , Secuencia de Bases , Biodegradación Ambiental , Microbiología del Suelo
6.
Acta Biomater ; 168: 440-457, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479159

RESUMEN

Cosmetics for perming hair are commonly used but have negative impacts on hair fibers. Repairing damaged hair with conditioners, hair oil, and hair masks can provide relief but cannot prevent injuries. Recent research has shown that proteins and amino acids can remodel hair's disulfide bonds. However, the permeation ability of proteins is limited, and amino acids may disrupt the secondary structure of hair keratins. Our study demonstrates that peptides can be safely, efficiently, and promisingly used for hair perming. A bioinspired peptide, PepACS (PepA-PepC-SPB), was designed through bioinformatics. It can interact with keratin's sulfhydryl group in situ to remodel disulfide bonds without affecting hair fiber's tensile properties. The potential of PepACS to repair cuticle injuries is also observed through scanning electron microscope visualization. Besides, linking PepACS with mCherry enables hair dyeing. This research suggests that biomaterials can be applied in the hair care industry. STATEMENT OF SIGNIFICANCE: Chemical perming products can have negative impacts on people's health and hair fibers, making it essential to explore alternative methods. Peptides treatment is a promising option, but synthesizing sulfur-rich short peptides for hair perming has not been demonstrated before. In this paper, we utilized bioinformatics to design bio-inspired peptides that can interact with hair keratins and form curled shapes. Our study demonstrates that bioinformatics tools can be utilized to design bioinspired peptides with unique functions. Sulfur-rich short peptides can be heterologously expressed with fusion strategies, and PepACS can securely bind hair fibers through disulfide bonds. Importantly, perming hair with 0.01% PepACS maintains the mechanical properties of hair, and dyeing hair with the fusion protein PepACS_mCh can be facilitated by ethanol. These findings suggest that the strategy of perming and dyeing hair through peptides is non-injurious, and the peptides used for repairing hair damage show tremendous potential.


Asunto(s)
Tinturas para el Cabello , Queratinas Específicas del Pelo , Humanos , Queratinas Específicas del Pelo/análisis , Queratinas Específicas del Pelo/metabolismo , Tinturas para el Cabello/análisis , Tinturas para el Cabello/química , Tinturas para el Cabello/metabolismo , Proteínas/metabolismo , Péptidos/metabolismo , Aminoácidos/análisis , Cabello/química , Disulfuros/metabolismo
7.
J Fungi (Basel) ; 9(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36836363

RESUMEN

Copper is an essential element that maintains yeast physiological function at low concentrations, but is toxic in excess. This study reported that Cu(II) significantly promoted the yeast-to-hypha transition of Yarrowia lipolytica in dose-dependent manner. Strikingly, the intracellular Cu(II) accumulation was drastically reduced upon hyphae formation. Moreover, we investigated the effect of Cu(II) on the physiological function of Y. lipolytica during the dimorphic transition and found that cellular viability and thermomyces lanuginosus lipase (TLL) were both influenced by the Cu(II)-induced yeast-to-hypha transition. Overall, hyphal cells survived better than yeast-form cells with copper ions. Furthermore, transcriptional analysis of the Cu(II)-induced Y. lipolytica before and after hyphae formation revealed a transition state between them. The results showed multiple differentially expressed genes (DEGs) were turned over between the yeast-to-transition and the transition-to-hyphae processes. Furthermore, gene set enrichment analysis (GSEA) identified that multiple KEGG pathways, including signaling, ion transport, carbon and lipid metabolism, ribosomal, and other biological processes, were highly involved in the dimorphic transition. Importantly, overexpression screening of more than thirty DEGs further found four novel genes, which are encoded by YALI1_B07500g, YALI1_C12900g, YALI1_E04033g, and YALI1_F29317g, were essential regulators in Cu-induced dimorphic transition. Overexpression of each of them will turn on the yeast-to-hypha transition without Cu(II) induction. Taken together, these results provide new insight to explore further the regulatory mechanism of dimorphic transition in Y. lipolytica.

8.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430193

RESUMEN

In nature, DNA is ubiquitous, existing not only inside but also outside of the cells of organisms. Intracellular DNA (iDNA) plays an essential role in different stages of biological growth, and it is defined as the carrier of genetic information. In addition, extracellular DNA (eDNA) is not enclosed in living cells, accounting for a large proportion of total DNA in the environment. Both the lysis-dependent and lysis-independent pathways are involved in eDNA release, and the released DNA has diverse environmental functions. This review provides an insight into the origin as well as the multiple ecological functions of eDNA. Furthermore, the main research advancements of eDNA in the various ecological environments and the various model microorganisms are summarized. Furthermore, the major methods for eDNA extraction and quantification are evaluated.


Asunto(s)
ADN , ADN Bacteriano/genética , ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA