Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cell Genom ; 3(5): 100290, 2023 May 10.
Article En | MEDLINE | ID: mdl-37228749

Human genetic diversity can reveal critical factors in host-pathogen interactions. This is especially useful for human-restricted pathogens like Salmonella enterica serovar Typhi (S. Typhi), the cause of typhoid fever. One key defense during bacterial infection is nutritional immunity: host cells attempt to restrict bacterial replication by denying bacteria access to key nutrients or supplying toxic metabolites. Here, a cellular genome-wide association study of intracellular replication by S. Typhi in nearly a thousand cell lines from around the world-and extensive follow-up using intracellular S. Typhi transcriptomics and manipulation of magnesium availability-demonstrates that the divalent cation channel mucolipin-2 (MCOLN2 or TRPML2) restricts S. Typhi intracellular replication through magnesium deprivation. Mg2+ currents, conducted through MCOLN2 and out of endolysosomes, were measured directly using patch-clamping of the endolysosomal membrane. Our results reveal Mg2+ limitation as a key component of nutritional immunity against S. Typhi and as a source of variable host resistance.

2.
Antibiotics (Basel) ; 11(6)2022 May 26.
Article En | MEDLINE | ID: mdl-35740123

Efflux pumps in Gram-negative bacteria such as Pseudomonas aeruginosa provide intrinsic antimicrobial resistance by facilitating the extrusion of a wide range of antimicrobials. Approaches for combating efflux-mediated multidrug resistance involve, in part, developing indirect antimicrobial agents capable of inhibiting efflux, thus rescuing the activity of antimicrobials previously rendered inactive by efflux. Herein, TXA09155 is presented as a novel efflux pump inhibitor (EPI) formed by conformationally constraining our previously reported EPI TXA01182. TXA09155 demonstrates strong potentiation in combination with multiple antibiotics with efflux liabilities against wild-type and multidrug-resistant (MDR) P. aeruginosa. At 6.25 µg/mL, TXA09155, showed ≥8-fold potentiation of levofloxacin, moxifloxacin, doxycycline, minocycline, cefpirome, chloramphenicol, and cotrimoxazole. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA09155. TXA09155 was determined to lower the frequency of resistance (FoR) to levofloxacin and enhance the killing kinetics of moxifloxacin. Most importantly, TXA09155 outperformed the levofloxacin-potentiation activity of EPIs TXA01182 and MC-04,124 against a CDC/FDA panel of MDR clinical isolates of P. aeruginosa. TXA09155 possesses favorable physiochemical and ADME properties that warrant its optimization and further development.

3.
J Antibiot (Tokyo) ; 75(7): 385-395, 2022 07.
Article En | MEDLINE | ID: mdl-35618784

FtsZ inhibitors represent a new drug class as no drugs using this mode of action (MOA) have been approved by regulators. 3-alkoxy substituted 2,6-difluorobenzamide scaffold is one of the most studied FtsZ inhibitors among which the most promising anti-MRSA candidate TXA709 is in clinical trial. In this paper, we present the screening and evaluation of a benzamide class that is functionalized at the alkoxy fragment targeting Gram-negative bacteria. The variations in 3-alkoxy substitutions, specifically the hydroxylated alkyl residues to the secondary and stereogenic pseudo-benzylic carbon of their methyleneoxy linker, are particularly active against K. pneumoniae ATCC 10031 in marked contrast to the derivatives related to PC190723, all of which were inactive against Gram-negative bacteria. The two lead molecules TXA6101 and TXY6129 inhibit the polymerization of E. coli FtsZ in a concentration-dependent manner and induce changes in the morphology of E. coli and K. pneumoniae consistent with inhibition of cell division. These classes of compounds, however, were found to be substrates for efflux pumps in Gram-negative bacteria.


Cytoskeletal Proteins , Escherichia coli , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Benzamides/chemistry , Benzamides/pharmacology , Cytoskeletal Proteins/chemistry , Klebsiella pneumoniae
4.
Med Chem Res ; 31(10): 1679-1704, 2022 Oct.
Article En | MEDLINE | ID: mdl-37077288

MreB is a cytoskeleton protein present in rod-shaped bacteria that is both essential for bacterial cell division and highly conserved. Because most Gram (-) bacteria require MreB for cell division, chromosome segregation, cell wall morphogenesis, and cell polarity, it is an attractive target for antibacterial drug discovery. As MreB modulation is not associated with the activity of antibiotics in clinical use, acquired resistance to MreB inhibitors is also unlikely. Compounds, such as A22 and CBR-4830, are known to disrupt MreB function by inhibition of ATPase activity. However, the toxicity of these compounds has hindered efforts to assess the in vivo efficacy of these MreB inhibitors. The present study further examines the structure-activity of analogs related to CBR-4830 as it relates to relative antibiotic activity and improved drug properties. These data reveal that certain analogs have enhanced antibiotic activity. In addition, we evaluated several representative analogs (9, 10, 14, 26, and 31) for their abilities to target purified E. coli MreB (EcMreB) and inhibit its ATPase activity. Except for 14, all these analogs were more potent than CBR-4830 as inhibitors of the ATPase activity of EcMreB with corresponding IC50 values ranging from 6 ± 2 to 29 ± 9 µM.

5.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34884606

Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson's disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.


Neurotoxicity Syndromes/pathology , Neurotoxins/adverse effects , Oxidative Stress , Animals , Humans , Neurotoxicity Syndromes/etiology
6.
Prog Biophys Mol Biol ; 167: 87-95, 2021 12.
Article En | MEDLINE | ID: mdl-34216638

The biological damage caused by the environmental factors such as radiation and its control methods are one of the frontiers of life science research that has received widespread attention. Ionizing radiation can directly interact with target molecules (such as DNA, proteins and lipids) or decomposed by radiation from water, leading to changes in oxidative events and biological activities in cells. Liver is a radiation-sensitive organ, and its radiosensitivity is second only to bone marrow, lymph, gastrointestinal tissue, gonads, embryos and kidneys. In addition, as a key organ of mammals, liver performs a series of functions, including the production of bile, the metabolism of nutrients, the elimination of waste, the storage of glycogen, and the synthesis of proteins. Therefore, liver is prone to various pathophysiological changes. In this review, the effects of radiation on liver injury, its pathogenesis, bystander effect and the natural traditional Chinese medicine to protect the radiation induced liver damage are discussed.


Liver , Radiation, Ionizing , Animals , DNA , DNA Damage , Oxidation-Reduction
7.
Antibiotics (Basel) ; 11(1)2021 Dec 28.
Article En | MEDLINE | ID: mdl-35052908

The ability to rescue the activity of antimicrobials that are no longer effective against bacterial pathogens such as Pseudomonas aeruginosa is an attractive strategy to combat antimicrobial drug resistance. Herein, novel efflux pump inhibitors (EPIs) demonstrating strong potentiation in combination with levofloxacin against wild-type P. aeruginosa ATCC 27853 are presented. A structure activity relationship of aryl substituted heterocyclic carboxamides containing a pentane diamine side chain is described. Out of several classes of fused heterocyclic carboxamides, aryl indole carboxamide compound 6j (TXA01182) at 6.25 µg/mL showed 8-fold potentiation of levofloxacin. TXA01182 was found to have equally synergistic activities with other antimicrobial classes (monobactam, fluoroquinolones, sulfonamide and tetracyclines) against P. aeruginosa. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA01182. TXA01182 was determined to lower the frequency of resistance (FoR) of the partner antimicrobials and enhance the killing kinetics of levofloxacin. Furthermore, TXA01182 demonstrated a synergistic effect with levofloxacin against several multidrug resistant P. aeruginosa clinical isolates.

8.
Medicine (Baltimore) ; 95(49): e5564, 2016 Dec.
Article En | MEDLINE | ID: mdl-27930563

The purpose of the study was to establish a mathematical model for correlating the combination of ultrasonography and noncontrast helical computerized tomography (NCHCT) with the total energy of Holmium laser lithotripsy.In this study, from March 2013 to February 2014, 180 patients with single urinary calculus were examined using ultrasonography and NCHCT before Holmium laser lithotripsy. The calculus location and size, acoustic shadowing (AS) level, twinkling artifact intensity (TAI), and CT value were all documented. The total energy of lithotripsy (TEL) and the calculus composition were also recorded postoperatively. Data were analyzed using Spearman's rank correlation coefficient, with the SPSS 17.0 software package. Multiple linear regression was also used for further statistical analysis.A significant difference in the TEL was observed between renal calculi and ureteral calculi (r = -0.565, P < 0.001), and there was a strong correlation between the calculus size and the TEL (r = 0.675, P < 0.001). The difference in the TEL between the calculi with and without AS was highly significant (r = 0.325, P < 0.001). The CT value of the calculi was significantly correlated with the TEL (r = 0.386, P < 0.001). A correlation between the TAI and TEL was also observed (r = 0.391, P < 0.001). Multiple linear regression analysis revealed that the location, size, and TAI of the calculi were related to the TEL, and the location and size were statistically significant predictors (adjusted r = 0.498, P < 0.001).A mathematical model correlating the combination of ultrasonography and NCHCT with TEL was established; this model may provide a foundation to guide the use of energy in Holmium laser lithotripsy. The TEL can be estimated by the location, size, and TAI of the calculus.


Lithotripsy, Laser/methods , Models, Theoretical , Ureteral Calculi/therapy , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Tomography, Spiral Computed , Treatment Outcome , Ultrasonography, Interventional , Young Adult
9.
J Bacteriol ; 198(18): 2410-8, 2016 09 15.
Article En | MEDLINE | ID: mdl-27353652

UNLABELLED: Bacteroides is a major component of the human gut microbiota which has a broad impact on the development and physiology of its host and a potential role in a wide range of disease syndromes. The predominance of this genus is due in large part to expansion of paralogous gene clusters, termed polysaccharide utilization loci (PULs), dedicated to the uptake and catabolism of host-derived and dietary polysaccharides. The nutritive value and availability of polysaccharides in the gut vary greatly; thus, their utilization is hierarchical and strictly controlled. A typical PUL includes regulatory genes that induce PUL expression in response to the presence of specific glycan substrates. However, the existence of additional regulatory mechanisms has been predicted to explain phenomena such as hierarchical control and catabolite repression. In this report, a previously unknown layer of regulatory control was discovered in Bacteroides fragilis Exploratory transcriptome sequencing (RNA-seq) analysis revealed the presence of cis-encoded antisense small RNAs (sRNAs) associated with 15 (30%) of the B. fragilis PULs. A model system using the Don (degradation of N-glycans) PUL showed that the donS sRNA negatively regulated Don expression at the transcriptional level, resulting in a decrease in N-glycan utilization. Additional studies performed with other Bacteroides species indicated that this regulatory mechanism is highly conserved and, interestingly, that the regulated PULs appear to be closely linked to the utilization of host-derived glycans rather than dietary plant polysaccharides. The findings described here demonstrate a global control mechanism underlying known PUL regulatory circuits and provide insight into regulation of Bacteroides physiology. IMPORTANCE: The human gut is colonized by a dense microbiota which is essential to the health and normal development of the host. A key to gut homeostasis is the preservation of a stable, diverse microbiota. Bacteroides is a dominant genus in the gut, and the ability of Bacteroides species to efficiently compete for a wide range of glycan energy sources is a crucial advantage for colonization. Glycan utilization is mediated by a large number of polysaccharide utilization loci (PULs) which are regulated by substrate induction. In this report, a novel family of antisense sRNAs is described whose members repress gene expression in a distinct subset of PULs. This repression downregulates PUL expression in the presence of energy sources that are more readily utilized such as glucose, thereby allowing efficient glycan utilization.


Bacteroides/metabolism , Gene Expression Regulation, Bacterial/physiology , Polysaccharides/metabolism , RNA, Bacterial/metabolism , RNA, Small Interfering/metabolism , Bacteroides/genetics , Down-Regulation , RNA Interference , Sigma Factor/genetics , Sigma Factor/metabolism
10.
Proc Natl Acad Sci U S A ; 111(35): 12901-6, 2014 Sep 02.
Article En | MEDLINE | ID: mdl-25139987

Bacteroides fragilis is the most common anaerobe isolated from clinical infections, and in this report we demonstrate a characteristic of the species that is critical to their success as an opportunistic pathogen. Among the Bacteroides spp. in the gut, B. fragilis has the unique ability of efficiently harvesting complex N-linked glycans from the glycoproteins common to serum and serous fluid. This activity is mediated by an outer membrane protein complex designated as Don. Using the abundant serum glycoprotein transferrin as a model, it has been shown that B. fragilis alone can rapidly and efficiently deglycosylate this protein in vitro and that transferrin glycans can provide the sole source of carbon and energy for growth in defined media. We then showed that transferrin deglycosylation occurs in vivo when B. fragilis is propagated in the rat tissue cage model of extraintestinal growth, and that this ability provides a competitive advantage in vivo over strains lacking the don locus.


Bacteroides Infections/metabolism , Bacteroides Infections/microbiology , Bacteroides fragilis/metabolism , Polysaccharides/metabolism , Abscess/metabolism , Abscess/microbiology , Anaerobiosis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides fragilis/genetics , Bacteroides fragilis/growth & development , Body Fluids/metabolism , Body Fluids/microbiology , Carbon/metabolism , Culture Media/metabolism , Diffusion Chambers, Culture/microbiology , Disease Models, Animal , Glucose/metabolism , Glycoproteins/blood , Glycoproteins/metabolism , Glycosylation , Humans , Microbiota , Phylogeny , Rats , Swine , Transferrin/metabolism
...