Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Neurosci Bull ; 36(4): 333-345, 2020 Apr.
Article En | MEDLINE | ID: mdl-31823302

Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.


Epilepsy , Hippocampus/diagnostic imaging , Synchrotrons , Animals , Epilepsy/diagnostic imaging , Hippocampus/pathology , Imaging, Three-Dimensional , Male , Rats , Rats, Sprague-Dawley
2.
Am J Physiol Renal Physiol ; 317(6): F1605-F1611, 2019 12 01.
Article En | MEDLINE | ID: mdl-31566428

The transient receptor potential canonical 6 (TRPC6) channel and podocin are colocalized in the glomerular slit diaphragm as an important complex to maintain podocyte function. Gain of TRPC6 function and loss of podocin function induce podocyte injury. We have previously shown that high glucose induces apoptosis of podocytes by activating TRPC6; however, whether the activated TRPC6 can alter podocin expression remains unknown. Western blot analysis and confocal microscopy were used to examine both expression levels of TRPC6, podocin, and nephrin and morphological changes of podocytes in response to high glucose. High glucose increased the expression of TRPC6 but reduced the expression of podocin and nephrin, in both cultured human podocytes and type 1 diabetic rat kidneys. The decreased podocin was diminished in TRPC6 knockdown podocytes. High glucose elevated intracellular Ca2+ in control podocytes but not in TRPC6 knockdown podocytes. High glucose also elevated the expression of a tight junction protein, zonula occludens-1, and induced the redistribution of zonula occludens-1 and loss of podocyte processes. These data together suggest that high glucose reduces protein levels of podocin by activating TRPC6 and induces morphological changes of cultured podocytes.


Glucose/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/biosynthesis , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/biosynthesis , Podocytes/metabolism , TRPC6 Cation Channel/biosynthesis , Animals , Calcium/metabolism , Cell Line , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Gene Knockdown Techniques , Humans , Podocytes/drug effects , Rats , TRPC6 Cation Channel/drug effects , Zonula Occludens-1 Protein/biosynthesis
3.
Sci Rep ; 5: 14982, 2015 Oct 07.
Article En | MEDLINE | ID: mdl-26443231

The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 µm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders.


Brain Mapping/methods , Brain/blood supply , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Synchrotrons , Animals , Male , Microvessels , Rats , Rats, Sprague-Dawley , Tomography, X-Ray Computed
...