Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7991): 295-302, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092907

RESUMEN

Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.


Asunto(s)
Electrofisiología , Polímeros , Agua , Animales , alfa-Ciclodextrinas/química , Electrodos , Electrofisiología/instrumentación , Electrofisiología/métodos , Electrofisiología/tendencias , Corazón , Músculos , Polietilenglicoles/química , Polímeros/química , Seda/química , Arañas , Agua/química , Hidrogeles/química , Electrónica/instrumentación , Electrónica/métodos , Electrónica/tendencias
2.
Adv Mater ; 35(30): e2211236, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37072159

RESUMEN

Long-term epidermal electrophysiological (EP) monitoring is crucial for disease diagnosis and human-machine synergy. The human skin is covered with hair that grows at an average rate of 0.3 mm per day. This impedes a stable contact between the skin and dry epidermal electrodes, resulting in motion artifacts during ultralong-term EP monitoring. Therefore, accurate and high-quality EP signal detection remains challenging. To address this issue, a new solution-the hairy-skin-adaptive viscoelastic dry electrode (VDE) is reported. This innovative technology is capable of bypassing hair and filling into the skin wrinkles, leading to long-lasting and stable interface impedance. The VDE maintains a stable interface impedance for a remarkable period of 48 days and 100 cycles. The VDE is highly effective in shielding against hair disturbances in electrocardiography (ECG) monitoring, even during intense chest expansion, and in electromyography (EMG) monitoring during large strain. Furthermore, the VDE is easily attachable to the skull without requiring any electroencephalogram (EEG) cap or bandage, making it an ideal solution for EEG monitoring. This work represents a substantial breakthrough in the field of EP monitoring, providing a solution for the previously challenging issue of monitoring human EP signals on hairy skin.


Asunto(s)
Cabello , Piel , Humanos , Epidermis , Impedancia Eléctrica , Electrodos , Electroencefalografía/métodos
3.
Nanoscale ; 14(5): 1653-1669, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35040855

RESUMEN

In recent years, real-time health management has received increasing attention, benefiting from the rapid development of flexible and wearable devices. Conventionally, flexible and wearable devices are used for collecting health data such as electrophysiological signals, blood pressure, heart rate, etc. The monitoring of chemical factors has shown growing significance, providing the basis for the screening, diagnosis, and treatment of many diseases. Nowadays, in order to understand the health status of the human body more comprehensively and accurately, researchers in the community have started putting effort into developing wearable devices for monitoring chemical factors. Progressively, more flexible chemical sensors with wearable real-time health-monitoring functionality have been developed thanks to advances relating to wireless communications and flexible electronics. In this review, we describe the variety of chemical molecules and information that can currently be monitored, including pH levels, glucose, lactate, uric acid, ion levels, cytokines, nutrients, and other biomarkers. This review analyzes the pros and cons of the most advanced wearable chemical sensors in terms of wearability. At the end of this review, we discuss the current challenges and development trends relating to flexible and wearable chemical sensors from the aspects of materials, electrode designs, and soft-hard interface connections.


Asunto(s)
Dispositivos Electrónicos Vestibles , Presión Sanguínea , Electrodos , Electrónica , Humanos , Monitoreo Fisiológico
4.
Anal Chim Acta ; 1026: 125-132, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-29852988

RESUMEN

Nanofibers of α-Fe2O3 and γ-Fe2O3 have been obtained after the controlled calcination of precursor nanofibers synthesized by electrospinning. α-Fe2O3 nanofibers showed an irregular toruloid structure due to the decomposition of poly (4-vinyl) pyridine in air while γ-Fe2O3 nanoparticles decorated nanofibers were observed after the calcination under N2 atmosphere. Electrochemical measurements showed that different electrochemical behaviors were observed on the glassy carbon electrodes modified by α-Fe2O3 and γ-Fe2O3 nanofibers. The electrode modified by γ-Fe2O3 nanofibers exhibited high electrocatalytic activities toward oxidation of dopamine, uric acid and ascorbic acid while α-Fe2O3 nanofibers cannot. Furthermore, the γ-Fe2O3 modified electrode can realize the selective detection of biomolecules in ternary electrolyte solutions. The synthesis of nanofibers of α-Fe2O3 and γ-Fe2O3 and their electrochemical sensing properties relationship have been discussed and analyzed based on the experimental results.


Asunto(s)
Ácido Ascórbico/análisis , Técnicas Biosensibles , Dopamina/análisis , Técnicas Electroquímicas , Compuestos Ferrosos/química , Nanofibras/química , Ácido Úrico/análisis , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA