Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 166
1.
Cell Metab ; 36(4): 725-744, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38569470

Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.


Gastrointestinal Microbiome , Probiotics , Animals , Humans , Health Promotion , Nutritional Status , Anti-Bacterial Agents , Probiotics/pharmacology , Probiotics/therapeutic use
2.
Eur J Med Chem ; 270: 116358, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38574638

The fatty acid-binding protein 1 (FABP1) is a fatty acid transporter protein that is considered as an emerging target for metabolic diseases. Despite forceful evidence that the inhibition of FABP1 is essential for ameliorating NASH, pharmacological control and validation of FABP1 are hindered by a lack of relevant inhibitors as pharmacological tool. Therefore, the development of effective FABP1 inhibitors is a current focus of research. Herein, we firstly reported the comprehensive structure-activity relationship (SAR) study of novel FABP1 inhibitors derived from high throughput screening of our in-house library, which resulting in the identification of the optimal compound 44 (IC50 = 4.46 ± 0.54 µM). Molecular docking studies revealed that 44 forms stable hydrogen bonds with amino acids around the active pocket of FABP1. Moreover, 44 alleviated the typical histological features of fatty liver in NASH mice, including steatosis, lobular inflammation, ballooning and fibrosis. Additionally, 44 has been demonstrated to have lipid metabolism regulating, anti-oxidative stress and hepatoprotective properties. This study might be provided a promising insight into the field of NASH and inspiration for the development of FABP1 inhibitors.


Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Molecular Docking Simulation , Lipid Metabolism , Fibrosis , Fatty Acid-Binding Proteins/metabolism , Liver/metabolism
3.
Pharmacol Res ; 203: 107172, 2024 May.
Article En | MEDLINE | ID: mdl-38583685

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Aquaporins , Crohn Disease , Lysophospholipids , Macrophages , Crohn Disease/drug therapy , Crohn Disease/metabolism , Animals , Humans , Aquaporins/metabolism , Aquaporins/genetics , Aquaporins/antagonists & inhibitors , Macrophages/metabolism , Macrophages/drug effects , Lysophospholipids/metabolism , Mice , Hippo Signaling Pathway , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Male , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Cytokines/metabolism
4.
Sci Total Environ ; 926: 172103, 2024 May 20.
Article En | MEDLINE | ID: mdl-38556024

This study was conducted to examine how colostrum pasteurization affects resistance genes and microbial communities in calf feces. Forty female Holstein calves were randomly assigned to either the control (CON) group, which received unheated colostrum, or the pasteurized colostrum (PAT) group. The calves body weight was measured weekly before morning feeding. Calf starter intake were measured and recorded daily before morning feeding. Samples of colostrum were collected before feeding. Blood was collected on d 1 and 70 before morning feeding. Ten calves were randomly selected from each group (n = 20 calves total) for fecal sampling on d 3, 28, 56 and 70 for subsequent DNA extraction and metagenomic sequencing. Total bacterial counts in the colostrum were markedly higher in the CON group than in the PAT group. Pasteurized colostrum administration substantially reduced the ARO diversity and diminishes the abundance of Enterobacteriaceae, thereby decreasing their contribution to resistance genes. Pasteurization also reduced glucoside hydrolase-66 activity in 3-day-old calves which led to an increase in the activity of aminoglycoside antibiotics, resulting in 52.63 % of PAT-enriched bacteria acquiring aminoglycoside resistance genes. However, from the perspective of overall microbial community, the proportion of aminoglycoside, beta-lactam and tetracycline resistance genes carried by microbial community in PAT group was lower than CON group (P < 0.05). Fecal samples from the PAT group contained greater abundances of Subdoligranulum (P < 0.05) and Lachnospiraceae_NK4A136_group (P < 0.05) on days 28 and 70 compared to CON. Network analysis and abundance variations of the different bacteria obtained by linear discriminant analysis effect size analysis showed that pasteurized colostrum feeding reduced the interactions among related bacteria and maintained stability of the hind-gut microbiome. In conclusion, these findings underscore the intricate interactions between early diet, calf resistance-gene transmission and microbial dynamics, which should be carefully considered in calf-rearing practices.


Diet , Microbiota , Animals , Cattle , Female , Pregnancy , Aminoglycosides , Animal Feed/analysis , Animals, Newborn , Anti-Bacterial Agents/analysis , Colostrum/chemistry , Diet/veterinary , Feces/microbiology , Milk/chemistry , Ruminants
5.
Anim Nutr ; 16: 326-337, 2024 Mar.
Article En | MEDLINE | ID: mdl-38362513

This study was to investigate growth performance, rumination development, rumen fermentation and feed digestion in young calves provided high volumes (about 20% of calf birth weight) of milk with or without forage inclusion and how these parameters correlate with each other. Immediately after birth, 160 newborn Holstein female calves (41.6 ± 4.2 kg of initial BW) were randomly divided into 2 treatments: 1) starter (CON, only starter) and 2) starter and hay (HAY, both starter and hay). The calves were fed their respective experimental diets from d 4 to 84, after which they were all introduced to similar diets until the end of the experiment on d 196. Treatment had no effect on growth and structural measurements throughout the experimental period. However, treatment had an effect on the other parameters, mainly during the post-weaning period. Forage supplementation tended to reduce starter dry matter intake (P = 0.05), while increasing the forage intake (P < 0.01) and the feed-to-gain ratio (P < 0.01). HAY calves had increased neutral detergent fiber (NDF) and physically effective NDF (peNDF) intakes (P < 0.05) and tended to lower (P < 0.01) starch intake compared to CON calves. The HAY calves had a higher rumination time (P < 0.01), ruminal pH (P < 0.01), and acetate-to-propionate ratio (P = 0.05) compared to the CON calves. Spearman correlation analysis showed that rumination time was positively related to the ruminal pH at d 84 (P = 0.01) and 196 (P = 0.02). The HAY calves had similar apparent total-tract digestibility of dry matter (DM), NDF and ether extract (EE), but lower digestibility of organic matter (OM, P = 0.03), crude protein (CP, P < 0.01) and starch (P < 0.01) compared to those of the CON calves at week 12. Furthermore, there were no positive relationships between rumination time and nutrient digestibility or between rumination time per kilogram DM and nutrient digestibility. In conclusion, feeding hay to calves fed a high milk level improved rumination during the post-weaning period only, without a concomitant effect on growth performance throughout the experimental period, suggesting no detrimental effect of feeding forage in calves fed high milk level.

6.
Bioorg Chem ; 143: 107071, 2024 Feb.
Article En | MEDLINE | ID: mdl-38199141

Farnesoid X receptor (FXR) was considered as a promising drug target in the treatment of cholestasis, drug-induced liver injury, and non-alcoholic steatohepatitis (NASH). However, the existing FXR agonists have shown different degrees of side effects in clinical trials without clear interpretation. MET-409 in clinical phase Ⅲ, has been proven significantly fewer side effects than that of other FXR agonists. This may be due to the completely different structure of FEX and other non-steroidal FXR agonists. Herein, the structure-based drug design was carried out based on FEX, and the more active FXR agonist LH10 (FEX EC50 = 0,3 µM; LH10 EC50 = 0.14 µM)) was screened out by the comprehensive SAR studies. Furthermore, LH10 exhibited robust hepatoprotective activity on the ANIT-induced cholestatic model and APAP-induced acute liver injury model, which was even better than positive control OCA. In the nonalcoholic steatohepatitis (NASH) model, LH10 significantly improved the pathological characteristics of NASH by regulating several major pathways including lipid metabolism, inflammation, oxidative stress, and fibrosis. With the above attractive results, LH10 is worthy of further evaluation as a novel agent for the treatment of liver disorders.


Cholestasis , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Cytoplasmic and Nuclear , Liver/metabolism , Benzene Derivatives/pharmacology , Cholestasis/metabolism , Cholestasis/pathology
7.
Phys Chem Chem Phys ; 26(3): 2666-2677, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38175164

The appearance of the A-DA1D-A type of non-fullerene acceptor Y6 and its derivatives significantly improves the power conversion efficiency of organic solar cells. However, the effects of the modulation of the side chains of Y6 on its morphology and charge transport in organic thin films are still not well understood. In this work, we have systematically studied the effects of symmetric modifications of the length of alkyl side chains and the types, such as branched or straight alkyl chains, and the introduction of heteroatoms to side chains on these properties. A multiscale study, including density functional theory and classical molecular dynamics simulations, has been used to answer this open question. We find that face-on configurations are generally dominant for the AA, A1A1, and DD stacking of molecular pairs. With respect to prototype Y6, the introduction of oxygen atoms to outer alkyl side chains could enhance AA stacking but worsen the electrical network and enlarge the reorganization energy during electron transfer, and changing outer side straight alkyl chains to branched chains ruins π-π stacking of all units significantly. Finally, we discover that shortening outer alkyl side chains appropriately or changing inner branched chains to straight chains with the same number of carbon atoms is a good strategy to improve the molecular π-π stacking and electron mobility of Y6 while changing outer straight side chains to branched chains or introducing oxygen atoms to outer straight chains is the opposite. This study provides a new insight into the relationship between morphology and electron mobility and will be helpful for the design of future high-performance non-fullerene acceptors.

9.
Vaccines (Basel) ; 11(12)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38140203

Assaying the potency of inactivated viral influenza vaccines is performed using single radial immunodiffusion, which is the globally accepted release method for potency. Under conditions of a rapidly emerging pandemic, such as the 2009 H1N1 influenza pandemic, a recognized obstacle in the delivery of vaccines to the public is the time needed for the distribution of calibrated SRID reagents (antisera and antigen standards) to vaccine manufacturers. Previously, we first described a novel streamlined MS-based assay, CombE-IDMS, which does not rely on antisera/antibodies or reference antigens, as a potential rapidly deployable alternate potency method through a comparison with SRID on adjuvanted seasonal quadrivalent vaccine cell-based (aQIVc) materials. In this report, we further demonstrate that the CombE-IDMS method can also be applied to measure the potency of pre-pandemic H5N1 and H5N8 monovalent vaccine materials, each subtype both unadjuvanted and adjuvanted, through a forced degradation study. Overall, CombE-IDMS results align with those of the gold standard SRID method on both H5N1 and H5N8 materials under conditions of thermal, pH, oxidative and freeze/thaw stress, lending further evidence for the CombE-IDMS method's suitability as an alternate assay for potency of both seasonal and pandemic influenza vaccines.

10.
J Cancer ; 14(17): 3248-3257, 2023.
Article En | MEDLINE | ID: mdl-37928425

Renal cell carcinoma, shorted as RCC is a well-known urological cancer with high level of morbidity and mortality. Although the regulatory role of the spindle microtubule assembly factor (ASPM) in tumor progression has been established, its relationship to the development of RCC remains unclear. To determine the significance of this gene in RCC, we examined its expression in RCC patients in the TCGA database and compared ASPM level between clinical samples of normal tissues and RCC tissues collected at our center. The prognostic relevance of ASPM was assessed by generating Kaplan-Meier survival curves and log-rank functions. Following alteration of ASPM expression using sh-ASPM or oe-ASPM transfection, RCC cell characteristics were evaluated through CCK-8, Transwell, and colony formation assays. Western blot analysis was conducted to measure levels of genes affected by ASPM, and rescue experiments were performed to explore the involvement of Wnt3a signaling in ASPM-mediated malignancy in RCC. Our findings indicate that ASPM is upregulated in RCC samples, and its levels are associated with the long-term survival of RCC patients. ASPM promotes the migration, proliferation, and invasiveness of RCC cells, and the Wnt3a pathway may be implicated in this process. In conclusion, these results indicate that ASPM contributes to the cancer progression of RCC by targeting the Wnt3a signaling pathway.

11.
Crit Rev Food Sci Nutr ; : 1-38, 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37846905

Extensive research from large prospective cohort studies and meta-analytical investigations over recent decades have consistently indicated that dairy foods have protective effects, reducing the risk of colorectal cancer. Most of the literature has explored the potential role of milk minerals and vitamins in managing colorectal cancer. Yet, there is a paucity of a comprehensive summary of the anticancer attributes of milk protein components and their underlying mechanisms of action. Recent advancements have spotlighted the potential of whey proteins, including ß-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin, as promising candidates for both the prevention and treatment of colorectal cancer. Notably, whey proteins have demonstrated a more pronounced capacity for suppressing carcinogen-induced tumors when compared to casein. Their strong binding affinity enables them to serve as effective carriers for small molecules or drugs targeting colon cancer therapy. Furthermore, numerous studies have underscored the anti-inflammatory and antioxidant prowess of whey proteins in cancer prevention. Additionally, whey proteins have been shown to trigger apoptosis, hinder tumor cell proliferation, and impede metastasis. This comprehensive review, therefore, not only substantiates the significance of incorporating whey protein components into a balanced daily diet but also underscores their potential in safeguarding against the onset and progression of colorectal cancer.


Dairy products have consistently had protective effects in reducing the risk of colorectal cancer.Whey proteins have shown promise as candidates for the prevention and treatment of colorectal cancer.Whey proteins have a strong binding ability, enabling them to act as carriers of small molecules or drugs targeting colon cancer therapy.Their anti-inflammatory and anti-oxidant capacity may play a role in cancer prevention.Whey proteins could induce apoptosis and inhibit the proliferation and metastasis of tumor cells.

12.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article En | MEDLINE | ID: mdl-37834201

Y6 derivatives with asymmetric terminal groups have attracted considerable attention in recent years. However, the effects of the asymmetric modification of terminal groups on the photovoltaic performance of Y6 derivatives are not well understood yet. Therefore, we designed a series of Y6-based acceptors with asymmetric terminal groups by endowing them with various electron-withdrawing abilities and different conjugated rings to conduct systematic research. The electron-withdrawing ability of the Y6-D1 terminal group (substituted by IC-2F and IC-2NO2 terminals) is strongest, followed by Y6 (substituted by two same IC-2F terminals), Y6-D2 (substituted by IC-2F and 2-(4-oxo-4,5-dihydro-6H-cyclopenta[b]thiophen-6-ylidene)malononitrile terminals), Y6-D4 (substituted by IC-2F and indene ring), and Y6-D3 (substituted by IC-2F and thiazole ring). Computed results show that A-A stacking is the main molecular packing mode of Y6 and four other asymmetric Y6 derivatives. The ratios of A-A stacking face-on configuration of Y6-D1, Y6-D2, Y6-D3, Y6-D4, and Y6 are 51.6%, 55.0%, 43.5%, 59.3%, and 62.4%, respectively. Except for Y6-D1 substituted by the IC-2F and IC-2NO2 (the strongest electron-withdrawing capacity) terminal groups, the other three asymmetric molecules are mainly electron-transporting and can therefore act as acceptors. The open-circuit voltages of organic solar cells (OSCs) based on Y6-D2, Y6-D3, and Y6-D4, except for Y6-D1, may be higher than those of OSCs based on the Y6 acceptor because of their higher energy levels of lowest unoccupied molecular orbital (LUMO). PM6/Y6-D3 and PM6/Y6-D4 have better light absorption properties than PM6/Y6 due to their higher total oscillator strength. These results indicate that Y6-D3 and Y6-D4 can be employed as good acceptors.


Bandages , Electrons , Electron Transport , Thiazoles , Thiophenes
13.
Animals (Basel) ; 13(18)2023 Sep 10.
Article En | MEDLINE | ID: mdl-37760276

This study investigated the impact of dietary neutral detergent fiber (NDF) levels (25.49%, 28.65%, 31.66%, and 34.65%, respectively) on the feeding behavior, rumen fermentation, cellulolytic bacteria, and production performance of dairy cows during peak lactation. A feeding experiment was conducted using four fistulated Holstein dairy cows (600 ± 25 kg) with days in milk (50 ± 15 days), employing a 4 × 4 Latin square design to assign the cows to four groups. The results demonstrated that increasing NDF levels in the diet had the following effects: (1) A linear decrease in dry matter intake (DMI), NDF intake, and physically effective NDF8.0 (peNDF8.0) intake; a linear increase in the average time spent eating and ruminating, as well as the time spent eating and ruminating per kilogram of dry matter (DM); a quadratic response in the time spent ruminating per kilogram of NDF and peNDF8.0. (2) A linear increase in average pH value, acetate concentration, and the proportions of Fibrobacter succinogenes and Ruminococcus flavefaciens among total bacteria; a linear decrease in ammonia nitrogen (NH3-N) concentration, microbial crude protein (MCP), total volatile fatty acid (TVFA), propionate, butyrate, and lactate. (3) A linear decrease in milk yield, milk protein percentage, and nitrogen efficiency of dairy cows; a linear increase in milk fat percentage and milk urea nitrogen (MUN) concentration. Based on the combined results, it was found that diets with 25% and 34% NDF had detrimental effects on the feeding behavior, rumen fermentation, and production performance of dairy cows. However, the diet with 28% NDF showed superior outcomes in production performance compared to the one with 31% NDF. Therefore, it is strongly recommended to include a diet containing 28% NDF during the critical peak lactation period for dairy cows.

14.
Biochem Pharmacol ; 215: 115742, 2023 09.
Article En | MEDLINE | ID: mdl-37567318

Human carboxylesterase 2 (hCES2) is an enzyme that metabolizes irinotecan to SN-38, a toxic metabolite considered a significant source of side effects (lethal delayed diarrhea). The hCES2 inhibitors could block the hydrolysis of irinotecan in the intestine and thus reduce the exposure of intestinal SN-38, which may alleviate irinotecan-associated diarrhea. However, existing hCES2 inhibitors (except loperamide) are not used in clinical applications due to lack of validity or acceptable safety. Therefore, developing more effective and safer drugs for treating delayed diarrhea is urgently needed. This study identified a lead compound 1 with a novel scaffold by high-throughput screening in our in-house library. After a comprehensive structure-activity relationship study, the optimal compound 24 was discovered as an efficient and highly selective hCES2 inhibitor (hCES2: IC50 = 6.72 µM; hCES1: IC50 > 100 µM). Further enzyme kinetics study indicated that compound 24 is a reversible inhibitor of hCES2 with competitive inhibition mode (Ki = 6.28 µM). The cell experiments showed that compound 24 could reduce the level of hCES2 in living cells (IC50 = 6.54 µM). The modeling study suggested that compound 24 fitted very well with the binding pocket of hCES2 by forming multiple interactions. Notably, compound 24 can effectively treat irinotecan-induced delayed diarrhea and DSS-induced ulcerative colitis, and its safety has also been verified in subtoxic studies. Based on the overall pharmacological and preliminary safety profiles, compound 24 is worthy of further evaluation as a novel agent for irinotecan-induced delayed diarrhea.


Colitis, Ulcerative , Humans , Irinotecan/adverse effects , Colitis, Ulcerative/drug therapy , Carboxylesterase/metabolism , Diarrhea/chemically induced , Diarrhea/drug therapy , Intestines , Structure-Activity Relationship , Camptothecin/therapeutic use
15.
Eur J Med Chem ; 258: 115614, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37413879

Farnesoid X receptor (FXR) is considered as a promising target for the treatment of NASH. Although many non-steroidal FXR agonists have been reported, the structure types are quite scarce and mainly limited to the isoxazole scaffold derived from GW4064. Therefore, it is crucial to expand the structure types of FXR agonist to explore wider chemical space. In this study, the structure-based scaffold hopping strategy was performed by hybrid FXR agonist 1 and T0901317, which resulted in the discovery of sulfonamide FXR agonist 19. Molecular docking study reasonably explained the SAR in this series, and compound 19 fitted well with the binding pocket in a similar mode to the co-crystal ligand. In addition, compound 19 exhibited considerable selectivity against other nuclear receptors. In NASH model, compound 19 alleviated the typical histological features of fatty liver, including steatosis, lobular inflammation, ballooning, and fibrosis. Moreover, compound 19 exhibited acceptable safety profiles with no acute toxicity to major organ. These results suggested that the novel sulfonamide FXR agonist 19 might be a promising agent for the treatment of NASH.


Non-alcoholic Fatty Liver Disease , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Receptors, Cytoplasmic and Nuclear , Sulfonamides/pharmacology
16.
J Adv Res ; 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37423549

BACKGROUND: Bovine milk is a significant substitute for human breast milk and holds great importance in infant nutrition and health. Apart from essential nutrients, bovine milk also contains bioactive compounds, including a microbiota derived from milk itself rather than external sources of contamination. AIM OF REVIEW: Recognizing the profound impact of bovine milk microorganisms on future generations, our review focuses on exploring their composition, origins, functions, and applications. KEY SCIENTIFIC CONCEPTS OF REVIEW: Some of the primary microorganisms found in bovine milk are also present in human milk. These microorganisms are likely transferred to the mammary gland through two pathways: the entero-mammary pathway and the rumen-mammary pathway. We also elucidated potential mechanisms by which milk microbiota contribute to infant intestinal development. The mechanisms include the enhancing of the intestinal microecological niche, promoting the maturation of immune system, strengthening the intestinal epithelial barrier function, and interacting with milk components (e.g., oligosaccharides) via cross-feeding effect. However, given the limited understanding of bovine milk microbiota, further studies are necessary to validate hypotheses regarding their origins and to explore their functions and potential applications in early intestinal development.

17.
J Anim Sci Biotechnol ; 14(1): 107, 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37482622

BACKGROUND: Previous investigations into the effect of dietary forage on calf performance have been inconsistent, and there is a paucity of information exploring the effect of age on the growth performance and rumination of calves. Eighty-four female Holstein calves (41.5 ± 4.2 kg) were enrolled at birth, a subset of the calves were fed calf starter only (CON, n = 21) while the rest (n = 63) were classified into three treatment groups: the early (EHAY, n = 26, 5.1 ± 0.8 d), the middle (MHAY, n = 21, 7.9 ± 0.8 d) and the late (LHAY, n = 16, 12.1 ± 1.4 d) hay consumers. The short-term effect of the age at first forage consumption (AFF) on calves' feed intake was monitored until d 84. In addition, the long-term effects of AFF on body weight, structural growth and rumination behavior were recorded until d 196. Rumen samples were collected on d 1, 7, 35, 84 and 196 to analyze the rumen fermentation, while fecal samples were collected from d 78 to 84 to estimate digestibility parameters. RESULTS: Treatment had no effect on feed intake. While, the EHAY calves tended to have lower BW and ADG compared to LHAY and CON calves. Several total-tract apparent digestibility parameters and digestible nutrients intake were significantly lower in EHAY calves compared with CON and LHAY calves. Calves in the EHAY group tended to begin ruminating ealier, while CON calves were the latest (12.3 vs. 15.5 days of age). A treatment and time interaction was present for rumination time due to greater rumination in calves consuming hay compared to CON calves in week 10 to 12, the differences in rumination disappeared afterwards, no long-lasting significant differences in the rumination and rumen fermentation parameters were found between treatments. CONCLUSIONS: In conclusion, this study showed that hay consumption earlier in life (in the first week, around 5 days of life) could negatively affect the growth of the calf in the short and long term. Compared to consuming hay from the second week (around 12 days of life) or feeding concentrate only without hay, starting to consume hay from the first week could compromise nutrient digestibility and digestible nutrient intake independent of developing rumination behaviour and rumen fermentation.

18.
J Dairy Sci ; 106(9): 6402-6415, 2023 Sep.
Article En | MEDLINE | ID: mdl-37500426

Calf behavior is closely related to its early growth, production performance, and health performance. Continuous behavior recording is the most accurate but also time-consuming method used for monitoring animal behaviors, so the instantaneous sampling method is often adopted to minimize the time required to quantify behavioral observations in animal studies. Moreover, the optimal sampling intervals required to yield accurate information for estimating Holstein dairy calves' behaviors are still unknown. Our primary objective was to determine the most optimal sampling intervals for monitoring behaviors of Holstein dairy calves during preweaning and weaning periods to improve efficiency while maintaining reliability. The secondary objective was to describe their behavioral patterns. Rumination, lying, standing, and non-nutritive oral behavior (NNOB) data of 18 calves (observation time: 360 h/calf, 6,480 h in total) were continuously recorded for 15 d (3 d at 1, 3, 6, 9, and 12 wk of age). The continuous behavioral data were compared with instantaneous sampling at 5 s, 10 s, 15 s, 30 s,1 min, 3 min, 5 min, 10 min, 15 min, 30 min, and 60 min intervals. Sampling intervals were considered accurate if they met 4 criteria: coefficient of determination ≥0.90 (i.e., strongly related to true values), slope = 1, intercept = 0 (i.e., they did not over- or underestimate true values), and relative error <10%. The most optimal sampling interval was considered the highest sampling interval among the 11 sampling intervals that meet the criteria for accurate monitoring. As expected, the strength of the linear relationship between the continuous recording and instantaneous sampling decreased as the sampling intervals increased. The results varied across the different behaviors, with rumination, lying, standing, and NNOB being reliable at instantaneous recordings of 3 min, 10 min, 10 min, and 1 min for the preweaning period (1, 3, and 6 wk of age) and 10 min, 10 min, 15 min, and 3 min for the postweaning period (9 and 12 wk of age). In terms of behavioral patterns, lying time decreased, whereas rumination, standing, and NNOB time increased with age. After weaning, no significant changes in time spent performing these behaviors. Additionally, the rumination behavioral pattern becomes stable after wk 6 with decreasing after the morning feeding and occurring mainly in the morning. In conclusion, instantaneous sampling is a reliable method for monitoring the behaviors of dairy calves, but the optimal sampling intervals should be selected based on different ages and management conditions.


Behavior, Animal , Feeding Behavior , Animals , Cattle , Reproducibility of Results , Weaning , Animal Feed/analysis , Diet/veterinary
19.
Bioorg Chem ; 138: 106625, 2023 09.
Article En | MEDLINE | ID: mdl-37300962

Human carboxylesterase 2 (hCES2A), one of the most important serine hydrolases distributed in the small intestine and colon, plays a crucial role in the hydrolysis of various prodrugs and esters. Accumulating evidence has demonstrated that the inhibition of hCES2A effectively alleviate the side effects induced by some hCES2A-substrate drugs, including delayed diarrhea caused by the anticancer drug irinotecan. Nonetheless, there is a scarcity of selective and effective inhibitors that are suitable for irinotecan-induced delayed diarrhea. Following screening of the in-house library, the lead compound 01 was identified with potent inhibition on hCES2A, which was further optimized to obtain LK-44 with potent inhibitory activity (IC50 = 5.02 ± 0.67 µM) and high selectivity on hCES2A. Molecular docking and molecular dynamics simulations indicated that LK-44 can formed stable hydrogen bonds with amino acids surrounding the active cavity of hCES2A. The results of inhibition kinetics studies unveiled that LK-44 inhibited hCES2A-mediated FD hydrolysis in a mixed inhibition manner, with a Ki value of 5.28 µM. Notably, LK-44 exhibited low toxicity towards HepG2 cells according to the MTT assay. Importantly, in vivo studies showed that LK-44 significantly reduced the side effects of irinotecan-induced diarrhea. These findings suggested that LK-44 is a potent inhibitor of hCES2A with high selectivity against hCES1A, which has potential as a lead compound for the development of more effective hCES2A inhibitors to mitigate irinotecan-induced delayed diarrhea.


Diarrhea , Enzyme Inhibitors , Humans , Diarrhea/chemically induced , Diarrhea/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Irinotecan/adverse effects , Molecular Docking Simulation , Molecular Dynamics Simulation
20.
J Dairy Sci ; 106(8): 5416-5432, 2023 Aug.
Article En | MEDLINE | ID: mdl-37296049

The objective of this study was to determine the effect of dietary supplementation of n-3 polyunsaturated fatty acids (PUFA) and n-6 PUFA on dry matter intake (DMI), energy balance, oxidative stress, and performance of transition cows. Forty-five multiparous Holstein dairy cows with similar parity, body weight (BW), body condition score (BCS), and milk yield were used in a completely randomized design during a 56-d experimental period including 28 d prepartum and 28 d postpartum. At 240 d of pregnancy, cows were randomly assigned to one of the 3 isoenergetic and isoprotein dietary treatments, including a control ration containing 1% hydrogenated fatty acid (CON), a ration with 8% extruded soybean (HN6, high n-6 PUFA source), and a ration with 3.5% extruded flaxseed (HN3; high n-3 PUFA source). The HN6 and HN3 diets had an n-6/n-3 ratio of 3.05:1 and 0.64:1 in prepartum cows and 8.16:1 and 1.59:1 in postpartum cows, respectively. During the prepartum period (3, 2, and 1 wk before calving), DMI, DMI per unit of BW, total net energy intake, and net energy balance were higher in the HN3 than in the CON and NH6 groups. During the postpartum period (2, 3, and 4 wk after calving), cows fed HN3 and HN6 diets both showed increasing DMI, DMI as a percentage of BW, and total net energy intake compared with those fed the CON diet. The BW of calves in the HN3 group was 12.91% higher than those in the CON group. Yield and nutrient composition of colostrum (first milking after calving) were not affected by HN6 or HN3 but milk yield from 1 to 4 wk of milking was significantly improved compared with CON. During the transition period, BW, BCS, and BCS changes were not affected. Cows fed the HN6 diet had a higher plasma NEFA concentration compared with the CON cows during the prepartum period. Feeding HN3 reduced the proportion of de novo fatty acids and increased the proportion of preformed long-chain fatty acids in regular milk. In addition, the n-3 PUFA-enriched diet reduced the n-6/n-3 PUFA ratio in milk. In conclusion, increasing the n-3 fatty acids concentration in the diet increased both DMI during the transition period and milk production after calving, and supplementing n-3 fatty acids was more effective in mitigating the net energy balance after calving.


Fatty Acids, Omega-3 , Milk , Pregnancy , Female , Cattle , Animals , Lactation , Diet/veterinary , Postpartum Period , Energy Intake , Body Weight , Fatty Acids , Oxidative Stress , Energy Metabolism
...