Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Langmuir ; 32(13): 3234-41, 2016 Apr 05.
Article En | MEDLINE | ID: mdl-26982820

A major challenge in the design of biocidal drugs is to identify compounds with potential action on microorganisms and to understand at the molecular level their mechanism of action. In this study, thymol, a monoterpenoid found in the oil of leaves of Lippia sidoides with possible action in biological surfaces, was incorporated in lipid monolayers at the air-water interface that represented cell membrane models. The interaction of thymol with dipalmitoylphosphatidylcholine (DPPC) at the air-water interface was investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM), polarization-modulation reflection-absorption spectroscopy (PM-IRRAS), and molecular dynamics simulation. Thymol expands DPPC monolayers, decreases their surface elasticity, and changes the morphology of the lipid monolayer, which evidence the incorporation of this compound in the lipid Langmuir film. Such incorporation could be corroborated by PM-IRRAS since some specific bands for DPPC were changed upon thymol incorporation. Furthermore, potential of mean force obtained by molecular dynamics simulations indicates that the most stable position of the drug along the lipid film is near the hydrophobic regions of DPPC. These results may be useful to understand the interaction between thymol and cell membranes during biochemical phenomena, which may be associated with its pharmaceutical properties at the molecular level.

2.
Biochem Biophys Res Commun ; 467(4): 928-34, 2015 Nov 27.
Article En | MEDLINE | ID: mdl-26471302

Natural monoterpenes were isolated from the essential oil of Piper cernuum Vell. (Piperaceae) leaves. The crude oil and the individual monoterpenes were tested for cytotoxicity in human tumor cell lineages and B16F10-Nex2 murine melanoma cells. In the present work we demonstrate the activity of camphene against different cancer cells, with its mechanism of action being investigated in vitro and in vivo in murine melanoma. Camphene induced apoptosis by the intrinsic pathway in melanoma cells mainly by causing endoplasmic reticulum (ER) stress, with release of Ca(2+) together with HmgB1 and calreticulin, loss of mitochondrial membrane potential and up regulation of caspase-3 activity. Importantly, camphene exerted antitumor activity in vivo by inhibiting subcutaneous tumor growth of highly aggressive melanoma cells in a syngeneic model, suggesting a promising role of this compound in cancer therapy.


Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Melanoma, Experimental/drug therapy , Piper/chemistry , Terpenes/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Bicyclic Monoterpenes , Calcium/metabolism , Calreticulin/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/drug effects , Humans , Melanoma, Experimental/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Terpenes/pharmacology
3.
Nat Prod Commun ; 10(2): 285-8, 2015 Feb.
Article En | MEDLINE | ID: mdl-25920262

Fractionation of the MeOH extract from leaves of Piper cernuum Vell. (Piperaceae) afforded six phenylpropanoid derivatives: 3',4'-dimethoxydihydrocinnamic acid (1), piplaroxide (2), methyl 4'-hydroxy-3',5'-dimethoxy cinnamate (3), 3',4',5'-trimethoxydihydrocinnamic acid (3), dihydropiplartine (5), and piplartine (6). The structures of isolated metabolites were characterized by NMR and MS spectral data analysis. The chemical composition of essential oil from the leaves was determined using GC/LREIMS followed by the determination of Kovats indexes. This procedure allowed the identification of nineteen terpenoids, with ß-elemene (7), bicyclogermacrene (8), germacrene D (9), and (E)-caryophyllene (10) as the main compounds. Compounds 1 and 3-6 displayed no in vitro cytotoxicity against cancer cell lineages B16F10-Nex2, U87, HeLa, HL-60, HCT, and A2058 while 2 showed moderate activity against B16F10-Nex2 and HL-60 lines. Otherwise, compounds 7-10 displayed high cytotoxic activity. Evaluation against non-tumorigenic HFF cells indicated a reduced selectivity of compounds 7-10 to tumoral cells. No antileishmanial activity on macrophages infected with L. (L.) amnazonensis was found for the crude MeOH extract and compounds 1-6. The crude essential oil and compounds 7-10 reduced parasitism and eliminated the majority of infected and non-infected cells at 50 µg/mL.


Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/pharmacology , Oils, Volatile/pharmacology , Piper/chemistry , Plant Extracts/pharmacology , Plant Oils/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antiprotozoal Agents/chemistry , Cell Line, Tumor , Humans , Leishmania/drug effects , Macrophages/parasitology , Mice , Molecular Structure , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Oils/chemistry
4.
Molecules ; 19(6): 7528-42, 2014 Jun 06.
Article En | MEDLINE | ID: mdl-24914898

Bioactivity-guided fractionation of an antimicrobial active extract from twigs of Baccharis retusa C. DC. (Asteraceae) yielded the flavanone 5,4'-dihydroxy-7-methoxy-flavanone (sakuranetin) as responsible for the detected activity. The structure of the bioactive compound was established on the basis of spectroscopic data analysis, including NMR and MS. Additionally, the structure of a new crystal form of sakuranetin was confirmed by X-ray diffratometry. The minimum inhibitory concentrations (MIC) of isolated compound were determined against pathogenic yeast belonging to the genus Candida (six species), Cryptococcus (two species/four serotypes) and S. cerevisiae BY 4742 (S288c background) and ranged from 0.32 to 0.63 µg/µL. Our results showed that sakuranetin, which structure was fully characterized, could be used as a tool for the design of novel and more efficacious antifungal agents.


Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Asteraceae/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Candida/drug effects , Cryptococcus/drug effects , Microbial Sensitivity Tests , Saccharomyces cerevisiae/drug effects
...