Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 29(6): 1291-1305.e8, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31006591

RESUMEN

The hepatic TCA cycle supports oxidative and biosynthetic metabolism. This dual responsibility requires anaplerotic pathways, such as pyruvate carboxylase (PC), to generate TCA cycle intermediates necessary for biosynthesis without disrupting oxidative metabolism. Liver-specific PC knockout (LPCKO) mice were created to test the role of anaplerotic flux in liver metabolism. LPCKO mice have impaired hepatic anaplerosis, diminution of TCA cycle intermediates, suppressed gluconeogenesis, reduced TCA cycle flux, and a compensatory increase in ketogenesis and renal gluconeogenesis. Loss of PC depleted aspartate and compromised urea cycle function, causing elevated urea cycle intermediates and hyperammonemia. Loss of PC prevented diet-induced hyperglycemia and insulin resistance but depleted NADPH and glutathione, which exacerbated oxidative stress and correlated with elevated liver inflammation. Thus, despite catalyzing the synthesis of intermediates also produced by other anaplerotic pathways, PC is specifically necessary for maintaining oxidation, biosynthesis, and pathways distal to the TCA cycle, such as antioxidant defenses.


Asunto(s)
Antioxidantes/metabolismo , Ciclo del Ácido Cítrico/genética , Hígado/metabolismo , Redes y Vías Metabólicas/genética , Piruvato Carboxilasa/genética , Animales , Respiración de la Célula/genética , Gluconeogénesis/genética , Hepatitis/genética , Hepatitis/metabolismo , Hepatitis/patología , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Piruvato Carboxilasa/metabolismo
2.
PLoS One ; 10(8): e0136915, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26313355

RESUMEN

Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD) feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/genética , Regulación de la Expresión Génica , Obesidad/genética , Obesidad/fisiopatología , Condicionamiento Físico Animal , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Ácido Glutámico/metabolismo , Humanos , Malatos/metabolismo , Ratones , Mitocondrias Musculares/metabolismo , Obesidad/metabolismo , Oxidación-Reducción
3.
Mol Metab ; 2(4): 457-67, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24327961

RESUMEN

Cholesteryl ester transfer protein (CETP) shuttles lipids between lipoproteins, culminating in cholesteryl ester delivery to liver and increased secretion of cholesterol as bile. Since gut bile acids promote insulin sensitivity, we aimed to define if CETP improves insulin sensitivity with high-fat feeding. CETP and nontransgenic mice of both sexes became obese. Female but not male CETP mice had increased ileal bile acid levels versus nontransgenic littermates. CETP expression protected female mice from insulin resistance but had a minimal effect in males. In liver, female CETP mice showed activation of bile acid-sensitive pathways including Erk1/2 phosphorylation and Fxr and Shp gene expression. In muscle, CETP females showed increased glycolysis, increased mRNA for Dio2, and increased Akt phosphorylation, known effects of bile acid signaling. These results suggest that CETP can ameliorate insulin resistance associated with obesity in female mice, an effect that correlates with increased gut bile acids and known bile-signaling pathways.

4.
Genetics ; 195(1): 275-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23852385

RESUMEN

Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.


Asunto(s)
Genoma Fúngico , Saccharomyces/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Estrés Oxidativo , Saccharomyces/metabolismo
5.
J Lipid Res ; 53(3): 379-389, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22215797

RESUMEN

Mechanisms underlying changes in HDL composition caused by obesity are poorly defined, partly because mice lack expression of cholesteryl ester transfer protein (CETP), which shuttles triglyceride and cholesteryl ester between lipoproteins. Because menopause is associated with weight gain, altered glucose metabolism, and changes in HDL, we tested the effect of feeding a high-fat diet (HFD) and ovariectomy (OVX) on glucose metabolism and HDL composition in CETP transgenic mice. After OVX, female CETP-expressing mice had accelerated weight gain with HFD-feeding and impaired glucose tolerance by hyperglycemic clamp techniques, compared with OVX mice fed a low-fat diet (LFD). Sham-operated mice (SHAM) did not show HFD-induced weight gain and had less glucose intolerance than OVX mice. Using shotgun HDL proteomics, HFD-feeding in OVX mice had a large effect on HDL composition, including increased levels of apoA2, apoA4, apoC2, and apoC3, proteins involved in TG metabolism. These changes were associated with decreased hepatic expression of SR-B1, ABCA1, and LDL receptor, proteins involved in modulating the lipid content of HDL. In SHAM mice, there were minimal changes in HDL composition with HFD feeding. These studies suggest that the absence of ovarian hormones negatively influences the response to high-fat feeding in terms of glucose tolerance and HDL composition. CETP-expressing mice may represent a useful model to define how metabolic changes affect HDL composition and function.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Obesidad/sangre , Obesidad/metabolismo , Animales , Apolipoproteína C-II/sangre , Apolipoproteínas A/sangre , Western Blotting , Colesterol/sangre , Proteínas de Transferencia de Ésteres de Colesterol/genética , Cromatografía Líquida de Alta Presión , Biología Computacional , Dieta Alta en Grasa/efectos adversos , Femenino , Hiperinsulinismo/sangre , Hiperinsulinismo/inducido químicamente , Insulina/sangre , Lipoproteínas HDL/sangre , Lipoproteínas VLDL/sangre , Ratones , Ratones Transgénicos , Obesidad/genética , Ovariectomía , Triglicéridos/sangre , Aumento de Peso/efectos de los fármacos
6.
Endocrinology ; 151(8): 3566-76, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20501667

RESUMEN

For patients with diabetes, insulin resistance and hyperglycemia both contribute to increased serum triglyceride in the form of very low-density lipoprotein (VLDL). Our objective was to define the insulin conditions in which hyperglycemia promotes increased serum VLDL in vivo. We performed hyperglycemic-hyperinsulinemic clamp studies and hyperglycemic-hypoinsulinemic clamp studies in rats, with metabolic tracers for glucose flux and de novo fatty acid synthesis. When blood glucose was clamped at hyperglycemia (17 mm) for 2 h under hyperinsulinemic conditions (4 mU/kg . min), serum VLDL levels were not increased compared with baseline. We speculated that hyperinsulinemia minimized glucose-mediated VLDL changes and performed hyperglycemic-hypoinsulinemic clamp studies in which insulin was clamped near fasting levels with somatostatin (17 mm blood glucose, 0.25 mU/kg . min insulin). Under low-insulin conditions, serum VLDL levels were increased 4.7-fold after hyperglycemia, and forkhead box O1 (FoxO1) was not excluded from the nucleus of liver cells. We tested the extent that impaired inactivation of FoxO1 by insulin was sufficient for glucose to promote increased serum VLDL. We found that, when the ability of insulin to inactivate FoxO1 is blocked after adenoviral delivery of constitutively active FoxO1, glucose increased serum VLDL triglyceride when given both by ip glucose tolerance testing (3.5-fold increase) and by a hyperglycemic clamp (4.6-fold). Under both experimental conditions in which insulin signaling to FoxO1 was impaired, we found increased activation of carbohydrate response element binding protein. These data suggest that glucose more potently promotes increased serum VLDL when insulin action is impaired, with either low insulin levels or disrupted downstream signaling to the transcription factor FoxO1.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Glucosa/farmacología , Lipoproteínas VLDL/sangre , Proteínas del Tejido Nervioso/metabolismo , Adenoviridae/genética , Adenoviridae/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Hiperinsulinismo/sangre , Hiperinsulinismo/metabolismo , Insulina/sangre , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipoproteínas VLDL/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Ratas , Ratas Long-Evans , Ratas Transgénicas , Transducción Genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...