Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
HLA ; 102(6): 707-719, 2023 12.
Article En | MEDLINE | ID: mdl-37469131

The remarkable variability of response to vaccines against SARS-CoV-2 is apparent. The present study aims to estimate the extent to which the host genetic background contributes to this variability in terms of immune response and side effects following the administration of the BNT162b2 vaccine. We carried out a genome wide association study (GWAS) by genotyping 873 Italian healthcare workers who underwent anti-SARS-CoV-2 vaccination with the BNT162b2 vaccine and for whom information about anti-SARS-CoV-2 spike antibodies titers and vaccine side effects were available. The GWAS revealed a significant association between the HLA locus and the anti-SARS-CoV-2 Spike antibodies level at 2 months following the first dose of vaccine (SNP: rs1737060; p = 9.80 × 10-11 ). In particular, we observed a positive association between the antibody levels and the presence of the HLA-A*03:01 allele. The same allele was found associated with a 2-2.4-fold increased risk of experiencing specific side effects such as fever, chills and myalgia and a 1.5-1.8-fold increased risk of joint pain, nausea, fatigue, headache and asthenia, independently of age and sex. This study confirms that the heterogeneity in the immune response to the BNT162b2 vaccine and in its side effects are at least partially influenced by genetic variants. This information, integrated with individual biological and lifestyle-related correlates, could be of use in the definition of algorithms aimed at the identification of subjects in which the administration of additional vaccine doses would be particularly beneficial to maintain immunity against the virus.


Genome-Wide Association Study , Vaccines , Humans , Alleles , BNT162 Vaccine , COVID-19 Vaccines/adverse effects , Antibodies, Viral , Health Personnel , HLA-A Antigens
2.
Front Genet ; 13: 982508, 2022.
Article En | MEDLINE | ID: mdl-36386832

The sequencing of cell-free fetal DNA in the maternal plasma through non-invasive prenatal testing (NIPT) is an accurate genetic screening test to detect the most common fetal aneuploidies during pregnancy. The extensive use of NIPT, as a screening method, has highlighted the limits of the technique, including false positive and negative results. Feto-placental mosaicism is a challenging biological issue and is the most frequent cause of false positive and negative results in NIPT screening, and of discrepancy between NIPT and invasive test results. We are reporting on two cases of feto-placental mosaicism of trisomy 21, both with a low-risk NIPT result, identified by ultrasound signs and a subsequent amniocentesis consistent with a trisomy 21. In both cases, after the pregnancy termination, cytogenetic and/or cytogenomic analyses were performed on the placenta and fetal tissues, showing in the first case a mosaicism of trisomy 21 in both the placenta and the fetus, but a mosaicism in the placenta and a complete trisomy 21 in the fetus in the second case. These cases emphasize the need for accurate and complete pre-test NIPT counselling, as well as to identify situations at risk for a possible false negative NIPT result, which may underestimate a potential pathological condition, such as feto-placental mosaicism or fetal trisomy. Post-mortem molecular autopsy may discriminate between placental, fetal and feto-placental mosaicism, and between complete or mosaic fetal chromosomal anomalies. A multidisciplinary approach in counselling, as well as in the interpretation of biological events, is essential for the clarification of complex cases, such as feto-placental mosaicisms.

3.
Genes (Basel) ; 13(11)2022 10 27.
Article En | MEDLINE | ID: mdl-36360195

Congenital clubfoot is a common pediatric malformation that affects approximately 0.1% of all births. 80% of the cases appear isolated, while 20% can be secondary or associated with complex syndromes. To date, two genes that appear to play an important role are PTIX1 and TBX4, but their actual impact is still unclear. Our study aimed to evaluate the prevalence of pathogenic variants in PITX1 and TBX4 in Italian patients with idiopathic clubfoot. PITX1 and TBX4 genes were analyzed by sequence and SNP array in 162 patients. We detected only four nucleotide variants in TBX4, predicted to be benign or likely benign. CNV analysis did not reveal duplications or deletions involving both genes and intragenic structural variants. Our data proved that the idiopathic form of congenital clubfoot was rarely associated with mutations and CNVs on PITX1 and TBX4. Although in some patients, the disease was caused by mutations in both genes; they were responsible for only a tiny minority of cases, at least in the Italian population. It was not excluded that other genes belonging to the same TBX4-PITX1 axis were involved, even if genetic complexity at the origin of clubfoot required the involvement of other factors.


Clubfoot , Child , Humans , Clubfoot/genetics , DNA Copy Number Variations/genetics , Mutation , T-Box Domain Proteins/genetics
4.
J Pers Med ; 12(10)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36294757

Rheumatoid and psoriatic arthritis (RA and PsA) are inflammatory rheumatic disorders characterised by a multifactorial etiology. To date, the genetic contributions to the disease onset, severity and drug response are not clearly defined, and despite the development of novel targeted therapies, ~10% of patients still display poor treatment responses. We characterised a selected cohort of eleven non-responder patients aiming to define the genetic contribution to drug resistance. An accurate clinical examination of the patients was coupled with several high-throughput genetic testing, including HLA typing, SNPs-array and Whole Exome Sequencing (WES). The analyses revealed that all the subjects carry very rare HLA phenotypes which contain HLA alleles associated with RA development (e.g., HLA-DRB1*04, DRB1*10:01 and DRB1*01). Additionally, six patients also carry PsA risk alleles (e.g., HLA-B*27:02 and B*38:01). WES analysis and SNPs-array revealed 23 damaging variants with 18 novel "drug-resistance" RA/PsA candidate genes. Eight patients carry likely pathogenic variants within common genes (CYP21A2, DVL1, PRKDC, ORAI1, UGT2B17, MSR1). Furthermore, "private" damaging variants were identified within 12 additional genes (WNT10A, ABCB7, SERPING1, GNRHR, NCAPD3, CLCF1, HACE1, NCAPD2, ESR1, SAMHD1, CYP27A1, CCDC88C). This multistep approach highlighted novel RA/PsA candidate genes and genotype-phenotype correlations potentially useful for clinicians in selecting the best therapeutic strategy.

5.
Eur J Med Genet ; 63(2): 103639, 2020 Feb.
Article En | MEDLINE | ID: mdl-30858057

Chromosomal anomalies are well known to be an important cause of infertility, sterility and pregnancy loss. Balanced Reciprocal Translocation Mosaicism (BRTM) is an extremely rare phenomenon, mainly observed in subjects with a normal phenotype accompanied by reproductive failure. To date the mechanism of origin and the incidence of BRTM are poorly defined. Here we describe 10 new cases of BRTM. In 9 cases chromosome analysis revealed the presence of two different cell lines, one with a normal karyotype and the second with an apparently balanced reciprocal translocation. In the remaining case, both cell lines showed two different, but apparently balanced, reciprocal translocations. We document the clinical implications of BRTM, discuss its frequency in our referred population and suggest that carrier individuals might be more frequent than expected.


Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mosaicism , Phenotype , Translocation, Genetic , Abortion, Spontaneous/diagnosis , Abortion, Spontaneous/genetics , Adult , Female , Fertility/genetics , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Italy , Karyotyping , Male , Middle Aged , Polymorphism, Single Nucleotide , Reproductive History , Exome Sequencing
6.
Mol Genet Genomic Med ; 8(1): e1056, 2020 01.
Article En | MEDLINE | ID: mdl-31851782

BACKGROUND: Chromosomal microarray analysis (CMA) is nowadays widely used in the diagnostic path of patients with clinical phenotypes. However, there is no ascertained evidence to date on how to assemble single/combined clinical categories of developmental phenotypic findings to improve the array-based detection rate. METHODS: The Italian Society of Human Genetics coordinated a retrospective study which included CMA results of 5,110 Italian patients referred to 17 genetics laboratories for variable combined clinical phenotypes. RESULTS: Non-polymorphic copy number variants (CNVs) were identified in 1512 patients (30%) and 615 (32%) present in 552 patients (11%) were classified as pathogenic. CNVs were analysed according to type, size, inheritance pattern, distribution among chromosomes, and association to known syndromes. In addition, the evaluation of the detection rate of clinical subgroups of patients allowed to associate dysmorphisms and/or congenital malformations combined with any other single clinical sign to an increased detection rate, whereas non-syndromic neurodevelopmental signs and non-syndromic congenital malformations to a decreased detection rate. CONCLUSIONS: Our retrospective study resulted in confirming the high detection rate of CMA and indicated new clinical markers useful to optimize their inclusion in the diagnostic and rehabilitative path of patients with developmental phenotypes.


Chromosome Aberrations , Developmental Disabilities/genetics , Genetic Testing/standards , Oligonucleotide Array Sequence Analysis/standards , Practice Guidelines as Topic , DNA Copy Number Variations , Developmental Disabilities/classification , Developmental Disabilities/diagnosis , Genetic Testing/methods , Genetics, Medical/organization & administration , Humans , Italy , Oligonucleotide Array Sequence Analysis/methods , Phenotype , Sensitivity and Specificity , Societies, Medical/standards
7.
Hear Res ; 381: 107769, 2019 09 15.
Article En | MEDLINE | ID: mdl-31387071

Hearing loss (HL), one of the most common congenital disorder, affects about one child in 1000. Among the genetic forms of HL, ∼30% of the cases are associated with other signs or symptoms, leading to Syndromic Hearing Loss (SHL) with about 700 different forms described so far. In this report, we refer the clinical and molecular data of 38 Italian SHL unrelated patients, and their relatives, affected by the most common syndromes associated with HL (i.e., Usher, Pendred, Charge, Waardenburg, Alport, Stickler, Branchiootorenal and Microdeletions syndromes). Patients have been analysed using next-generation sequencing (NGS) and High Density (HD)-SNP array technologies. Data analysis led to the identification of nine novel and 27 known causative mutations in 12 genes and two microdeletions in chromosomes 1 and 10, respectively. In particular, as regards to Usher syndrome, that affects 32% of our patients, we were able to reach a molecular diagnosis in 83% of the cases and to identify in Northern Eastern Italy a very common USH2A gene mutation (39%) (c.11864G > A, p.(Trp3955*) which can be defined "Central-Eastern European allele." As regards to Alport syndrome, we were able to potentially reclassify a pathogenic allele in the COL4A3 gene, previously associated only with benign familial hematuria. In all the other cases, the genomic analysis allowed us to confirm the role of known causative genes and to identify several novel and known alleles. Overall, our results highlight the effectiveness of combining an accurate clinical characterization with the use of genomic technologies (NGS and SNP arrays) for the molecular diagnosis of SHL, with a clear positive impact in the management and treatment of all the patients.


Chromosome Deletion , Hearing Loss/genetics , Hearing/genetics , High-Throughput Nucleotide Sequencing , Mutation , Polymorphism, Single Nucleotide , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Predisposition to Disease , Hearing Loss/diagnosis , Hearing Loss/physiopathology , Humans , Infant , Italy , Male , Middle Aged , Phenotype , Predictive Value of Tests , Syndrome , Young Adult
8.
Mol Genet Genomic Med ; 7(3): e546, 2019 03.
Article En | MEDLINE | ID: mdl-30628197

In this paper, is reported the identification of two chimeric patients, a rare finding if sexual abnormalities are absent. However, their chimeric condition is responsible at least for the Silver-Russell phenotype observed in one of the two patients. By single nucleotide polymorphism-array analyses, it was possible to clearly define the mechanism responsible for this unusual finding, underlining the importance of this technique in bringing out the perhaps submerged world of chimeras.


Chimerism , Genetic Testing/methods , Polymorphism, Single Nucleotide , Prader-Willi Syndrome/genetics , Silver-Russell Syndrome/genetics , Child , Female , Humans , Male , Oligonucleotide Array Sequence Analysis/methods , Prader-Willi Syndrome/pathology , Silver-Russell Syndrome/pathology
9.
Eur J Hum Genet ; 27(1): 70-79, 2019 01.
Article En | MEDLINE | ID: mdl-30177775

Hereditary hearing loss (HHL) and age-related hearing loss (ARHL) are two major sensory diseases affecting millions of people worldwide. Despite many efforts, additional HHL-genes and ARHL genetic risk factors still need to be identified. To fill this gap a large genomic screening based on next-generation sequencing technologies was performed. Whole exome sequencing in a 3-generation Italian HHL family and targeted re-sequencing in 464 ARHL patients were performed. We detected three variants in SPATC1L: a nonsense allele in an HHL family and a frameshift insertion and a missense variation in two unrelated ARHL patients. In silico molecular modelling of all variants suggested a significant impact on the structural stability of the protein itself, likely leading to deleterious effects and resulting in truncated isoforms. After demonstrating Spatc1l expression in mice inner ear, in vitro functional experiments were performed confirming the results of the molecular modelling studies. Finally, a candidate-gene population-based statistical study in cohorts from Caucasus and Central Asia revealed a statistically significant association of SPATC1L with normal hearing function at low and medium hearing frequencies. Overall, the amount of different genetic data presented here (variants with early-onset and late-onset hearing loss in addition to genetic association with normal hearing function), together with relevant functional evidence, likely suggest a role of SPATC1L in hearing function and loss.


Cytoskeletal Proteins/genetics , Hearing Loss/genetics , Animals , Codon, Nonsense , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Middle Aged , Mutation, Missense , Protein Stability
10.
Genome Biol ; 19(1): 87, 2018 07 17.
Article En | MEDLINE | ID: mdl-30012220

BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.


ADAMTS Proteins/genetics , Connexin 43/genetics , Exome , Genetic Loci , Heart Conduction System/metabolism , Myocardium/metabolism , Animals , Black People , Electrocardiography , Female , Gene Expression , Gene Expression Profiling , Genome-Wide Association Study , Heart Conduction System/physiopathology , Humans , Male , Mice , Middle Aged , Myocardium/pathology , Open Reading Frames , Polymorphism, Single Nucleotide , White People , Exome Sequencing
11.
Front Genet ; 9: 681, 2018.
Article En | MEDLINE | ID: mdl-30622556

Hereditary hearing loss (HHL) is a common disorder characterized by a huge genetic heterogeneity. The definition of a correct molecular diagnosis is essential for proper genetic counseling, recurrence risk estimation, and therapeutic options. From 20 to 40% of patients carry mutations in GJB2 gene, thus, in more than half of cases it is necessary to look for causative variants in the other genes so far identified (~100). In this light, the use of next-generation sequencing technologies has proved to be the best solution for mutational screening, even though it is not always conclusive. Here we describe a combined approach, based on targeted re-sequencing (TRS) of 96 HHL genes followed by high-density SNP arrays, aimed at the identification of the molecular causes of non-syndromic HHL (NSHL). This strategy has been applied to study 103 Italian unrelated cases, negative for mutations in GJB2, and led to the characterization of 31% of them (i.e., 37% of familial and 26.3% of sporadic cases). In particular, TRS revealed TECTA and ACTG1 genes as major players in the Italian population. Furthermore, two de novo missense variants in ACTG1 have been identified and investigated through protein modeling and molecular dynamics simulations, confirming their likely pathogenic effect. Among the selected patients analyzed by SNP arrays (negative to TRS, or with a single variant in a recessive gene) a molecular diagnosis was reached in ~36% of cases, highlighting the importance to look for large insertions/deletions. Moreover, copy number variants analysis led to the identification of the first case of uniparental disomy involving LOXHD1 gene. Overall, taking into account the contribution of GJB2, plus the results from TRS and SNP arrays, it was possible to reach a molecular diagnosis in ~51% of NSHL cases. These data proved the usefulness of a combined approach for the analysis of NSHL and for the definition of the epidemiological picture of HHL in the Italian population.

12.
Am J Med Genet A ; 173(7): 1970-1974, 2017 Jul.
Article En | MEDLINE | ID: mdl-28411391

The phenotypic manifestations of microdeletions in the 19q13.32 region are still poorly known. In this paper we report a patient who presented with hypotonia, developmental delay, facial dysmorphism, micrognathia, kyphoscoliosis, and buried penis. Chromosomal microarray revealed an interstitial 327 kb de novo microdeletion in the 19q13.32 region comprising eight genes (ARGHAP35, NPAS1, TMEM160, ZC3H4, SAE1, BBC3, MIR3190, and MIR3191). Previously reported cases of microdeletions in the 19q13.32 region were reviewed and compared to our patient, highlighting the common features of a possible 19q13.32 microdeletion syndrome.

13.
PeerJ ; 3: e1252, 2015.
Article En | MEDLINE | ID: mdl-26539329

Anxiety disorders (ADs) are disabling chronic disorders with exaggerated behavioral response to threats. This study was aimed at testing the hypothesis that ADs may be associated with reduced neurotrophic activity, particularly of Brain-derived neurotrophic factor (BDNF), and determining possible effects of genetics on serum BDNF concentrations. In 672 adult subjects from six isolated villages in North-Eastern Italy with high inbreeding, we determined serum BDNF levels and identified subjects with different ADs subtypes such as Social and Specific Phobias (PHSOC, PHSP), Generalized Anxiety Disorder (GAD), and Panic Disorder (PAD). Analysis of the population as a whole or individual village showed no significant correlation between serum BDNF levels and Val66Met polymorphism and no association with anxiety levels. Stratification of subjects highlighted a significant decrease in serum BDNF in females with GAD and males with PHSP. This study indicates low heritability and absence of any impact of the Val66Met polymorphism on circulating concentrations of BDNF. Our results show that BDNF is not a general biomarker of anxiety but serum BDNF levels correlate in a gender-specific manner with ADs subtypes.

14.
Mol Cytogenet ; 8: 18, 2015.
Article En | MEDLINE | ID: mdl-25821518

BACKGROUND: Sensorineural hearing impairment is a common pathological manifestation in patients affected by X-linked intellectual disability. A few cases of interstitial deletions at Xq21 with several different phenotypic characteristics have been described, but to date, a complete molecular characterization of the deletions harboring disease-causing genes is still missing. Thus, the aim of this study is to realize a detailed clinical and molecular analysis of a family affected by syndromic X-linked hearing loss with intellectual disability. RESULTS: Clinical analyses revealed a very complex phenotype that included inner ear malformations, vestibular problems, choroideremia and hypotonia with a peculiar pattern of phenotypic variability. Genomic analysis revealed, for the first time, the presence of two close interstitial deletions in the Xq21.1-21.3, harboring 11 protein coding, 9 non-coding genes and 19 pseudogenes. Among these, 3 protein coding genes have already been associated with X-linked hearing loss, intellectual disability and choroideremia. CONCLUSIONS: In this study we highlighted the presence of peculiar genotypic and phenotypic details in a family affected by syndromic X-linked hearing loss with intellectual disability. We identified two, previously unreported, Xq21.1-21.3 interstitial deletions. The two rearrangements, containing several genes, segregate with the clinical features, suggesting their role in the pathogenicity. However, not all the observed phenotypic features can be clearly associated with the known genes thus, further study is necessary to determine regions involved.

...