Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038767

RESUMEN

Plastic material versatility has resulted in a substantial increase in its use in several sectors of our everyday lives. Consequently, concern regarding human exposure to nano-plastics (NPs) and micro-plastics (MPs) has recently increased. It has been shown that plastic particles entering the bloodstream may adhere to the erythrocyte surface and exert adverse effects following erythrocyte aggregation and adhesion to blood vessels. Here, we explored the effects of polystyrene nano-plastics (PS-NPs) and micro-plastics (PS-MPs) on human erythrocytes. Cellular morphology, binding/internalization of PS-NPs and PS-MPs, oxidative stress parameters, as well as the distribution and anion exchange capability of band 3 (anion exchanger 1; SLC4A1) have been analyzed in human erythrocytes exposed to 1 µg/mL PS-NPs or PS-MPs for 3 and 24 hours, respectively. The data obtained showed significant modifications of the cellular shape after exposure to PS-NPs or PS-MPs. In particular, a significantly increased number of acanthocytes, echinocytes and leptocytes were detected. However, the percentage of eryptotic cells (<1%) was comparable to physiological conditions. Analytical cytology and confocal microscopy showed that PS-NPs and PS-MPs bound to the erythrocyte plasma membrane, co-localized with estrogen receptors (Erα/ERß), and were internalized. An increased trafficking from the cytosol to the erythrocyte plasma membrane and abnormal distribution of ERs were also observed, consistent with ERα-mediated binding and internalization of PS-NPs. An increased phosphorylation of ERK1/2 and AKT kinases indicated that an activation of the ER-modulated non-genomic pathway occurred following exposure to PS-NPs and PS-MPs. Interestingly, PS-NPs or PS-MPs caused a significant production of reactive oxygen species, resulting in an increased lipid peroxidation and protein sulfhydryl group oxidation. Oxidative stress was also associated with an altered band 3 ion transport activity and increased oxidized haemoglobin, which led to abnormal clustering of band 3 on the plasma membrane. Taken together, these findings identify cellular events following the internalization of PS-NPs or PS-MPs in human erythrocytes and contribute to elucidating potential oxidative stress-related harmful effects, which may affect erythrocyte and systemic homeostasis.

2.
Sci Total Environ ; 931: 172975, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705298

RESUMEN

Nowadays, animal manure composting constitutes a sustainable alternative for farmers to enhance the level of nutrients within soils and achieve a good productivity. However, pollutants may be present in manures. This study focuses on the detection of environmental microplastics (EMPs) into composts, as well as on the assessment of their potential toxicity on the earthworm Eisenia andrei. To these aims, animals were exposed to two types of compost, namely bovine (cow) and ovine (sheep) manure, besides to their mixture, for 7 and 14 days. The presence and characterization of EMPs was evaluated in all the tested composts, as well as in tissues of the exposed earthworms. The impact of the tested composts was assessed by a multi-biomarker approach including cytotoxic (lysosomal membrane stability, LMS), genotoxic (micronuclei frequency, MNi), biochemical (activity of catalase, CAT, and glutathione-S-transferase, GST; content of malondialdehyde, MDA), and neurotoxic (activity of acetylcholinesterase, AChE) responses in earthworms. Results indicated the presence of high levels of EMPs in all the tested composts, especially in the sheep manure (2273.14 ± 200.89 items/kg) in comparison to the cow manure (1628.82 ± 175.23 items/kg), with the size <1.22 µm as the most abundant EMPs. A time-dependent decrease in LMS and AChE was noted in exposed earthworms, as well as a concomitant increase in DNA damages (MNi) after 7 and 14 days of exposure. Also, a severe oxidative stress was recorded in animals treated with the different types of compost through an increase in CAT and GST activities, and LPO levels, especially after 14 days of exposure. Therefore, it is necessary to carefully consider these findings for agricultural good practices in terms of plastic mitigation in compost usage, in order to prevent any risk for environment health.


Asunto(s)
Estiércol , Microplásticos , Oligoquetos , Contaminantes del Suelo , Oligoquetos/fisiología , Oligoquetos/efectos de los fármacos , Animales , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Compostaje/métodos , Pruebas de Toxicidad , Bovinos , Ovinos , Monitoreo del Ambiente/métodos
3.
Aquat Toxicol ; 264: 106736, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37913686

RESUMEN

Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Branquias/metabolismo , Microplásticos/metabolismo , Mytilus/metabolismo , Plásticos , Poliestirenos/metabolismo , Contaminantes Químicos del Agua/toxicidad
4.
Animals (Basel) ; 13(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760260

RESUMEN

The gastrointestinal tract (GIT) promotes the digestion and absorption of feeds, in addition to the excretion of waste products of digestion. In fish, the GIT is divided into four regions, the headgut, foregut, midgut, and hindgut, to which glands and lymphoid tissues are associated to release digestive enzymes and molecules involved in the immune response and control of host-pathogens. The GIT is inhabited by different species of resident microorganisms, the microbiota, which have co-evolved with the host in a symbiotic relationship and are responsible for metabolic benefits and counteracting pathogen infection. There is a strict connection between a fish's gut microbiota and its health status. This review focuses on the modulation of fish microbiota by feed additives based on prebiotics and probiotics as a feasible strategy to improve fish health status and gut efficiency, mitigate emerging diseases, and maximize rearing and growth performance. Furthermore, the use of histological assays as a valid tool for fish welfare assessment is also discussed, and insights on nutrient absorptive capacity and responsiveness to pathogens in fish by gut morphological endpoints are provided. Overall, the literature reviewed emphasizes the complex interactions between microorganisms and host fish, shedding light on the beneficial use of prebiotics and probiotics in the aquaculture sector, with the potential to provide directions for future research.

5.
Environ Res ; 235: 116608, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429403

RESUMEN

Microplastics (MPs) are pervasive in marine environments and widely recognized as emerging environmental pollutants due to the multifaceted risks they exert on living organisms and ecosystems. Sponges (Phylum Porifera) are essential suspension-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution, unique feeding behavior, and sedentary lifestyle. However, the role of sponges in MP research remains largely underexplored. In the present study, we investigate the presence and abundance of MPs (≤10 µm size) in four sponge species, namely Chondrosia reniformis, Ircinia variabilis, Petrosia ficiformis, and Sarcotragus spinosulus collected from four sites along the Mediterranean coast of Morocco, as well as their spatial distribution. MPs analysis was conducted using an innovative Italian patented extraction methodology coupled with SEM-EDX detection. Our findings reveal the presence of MPs in all collected sponge specimens, indicating a pollution rate of 100%. The abundance of MPs in the four sponge species ranged from 3.95×105 to 1.05×106 particles per gram dry weight of sponge tissue, with significant differences observed among sampling sites but no species-specific differences. These results imply that the uptake of MPs by sponges is likely influenced by aquatic environmental pollution rather than the sponge species themselves. The smallest and largest MPs were identified in C. reniformis and P. ficiformis, with median diameters of 1.84 µm and 2.57 µm, respectively. Overall, this study provides the first evidence and an important baseline for the ingestion of small MP particles in Mediterranean sponges, introducing the hypothesis that they may serve as valuable bioindicators of MP pollution in the near future.


Asunto(s)
Poríferos , Contaminantes Químicos del Agua , Animales , Microplásticos/análisis , Plásticos , Ecosistema , Bioacumulación , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
6.
Environ Toxicol Pharmacol ; 101: 104167, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37286067

RESUMEN

Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5 ng/L to 10 µg/L) and SA (0.05 µg/L to 100 µg/L) alone and combined as CAF+SA (5 ng/L+0.05 µg/L to 10 µg/L+100 µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Cafeína/toxicidad , Ácido Salicílico/farmacología , Catalasa/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Contaminantes Químicos del Agua/toxicidad , Biomarcadores/metabolismo
7.
Sci Total Environ ; 887: 163950, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37164086

RESUMEN

Heavy metal pollution is causing harmful consequences on soil fertility, and earthworms are frequently employed as test organisms to evaluate the ecotoxicity of polluted soils. In this study, Eisenia andrei was exposed for 7 and 14 days to polymetallic contaminated soils collected from an industrial zone in the south-eastern Tunisia. Earthworm growth, heavy metal accumulation, genotoxicity, cytotoxicity, biochemical and transcriptional responses were determined. Results revealed a higher accumulation of heavy metals in earthworms after 14 than 7 days of soil exposure, a reduction in lysosomal membrane stability (LMS), besides an increase in micronuclei frequency (MN). Moreover, earthworm oxidative status was affected in terms of increases in malondialdehyde (MDA) and metallothionein (MTs) content, and enhancement of catalase (CAT) and glutathione-S-transferase (GST) activities. An inhibition of acetylcholinesterase (AChE) activity was also observed in treated earthworms, whereas transcriptional data demonstrated an up-regulation of cat, gst, mt, p21 and topoisomerase genes. Overall, these findings support the use of earthworms as suitable bioindicator species for pollution monitoring and assessment, advance our understanding of the interaction between heavy metals and earthworms, and provide valuable information about the harmful impact of biota exposure to naturally contaminated soils.


Asunto(s)
Metales Pesados , Oligoquetos , Animales , Oligoquetos/fisiología , Transcriptoma , Túnez , Acetilcolinesterasa , Metales Pesados/análisis , Biomarcadores , Suelo/química
8.
Toxics ; 11(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36851056

RESUMEN

Mercury (Hg) is a dangerous and persistent trace element. Its organic and highly toxic form, methylmercury (MeHg), easily crosses biological membranes and accumulates in biota. Nevertheless, understanding the mechanisms of dietary MeHg toxicity in fish remains a challenge. A time-course experiment was conducted with juvenile white seabreams, Diplodus sargus (Linnaeus, 1758), exposed to realistic levels of MeHg in feed (8.7 µg g-1, dry weight), comprising exposure (E; 7 and 14 days) and post-exposure (PE; 28 days) periods. Total Hg levels increased with time in gills and liver during E and decreased significantly in PE (though levels of control fish were reached only for gills), with liver exhibiting higher levels (2.7 times) than gills. Nuclear magnetic resonance (NMR)-based metabolomics revealed multiple and often differential metabolic changes between fish organs. Gills exhibited protein catabolism, disturbances in cholinergic neurotransmission, and changes in osmoregulation and lipid and energy metabolism. However, dietary MeHg exposure provoked altered protein metabolism in the liver with decreased amino acids, likely for activation of defensive strategies. PE allowed for the partial recovery of both organs, even if with occurrence of oxidative stress and changes of energy metabolism. Overall, these findings support organ-specific responses according to their sensitivity to Hg exposure, pointing out that indications obtained in biomonitoring studies may depend also on the selected organ.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36294038

RESUMEN

Different types of metal oxide nanoparticles (NPs) are being used for wastewater treatment worldwide but concerns have been raised regarding their potential toxicities, especially toward non-targeted aquatic organisms including fishes. Therefore, the present study aimed to evaluate the toxicity of copper oxide (CuO) NPs (1.5 mg/L; positive control group) in a total of 130 common carp (Cyprinus carpio), as well as the potential ameliorative effects of fenugreek (Trigonella foenum-graecum) seed extracts (100 mg/L as G-1 group, 125 mg/L as G-2 group, and 150 mg/L as G-3 group) administered to fish for 28 days. Significant changes were observed in the morphometric parameters: the body weight and length of the CuO-NP-treated fish respectively decreased from 45.28 ± 0.34 g and 14.40 ± 0.56 cm at day one to 43.75 ± 0.41 g and 13.57 ± 0.67 cm at day 28. Conversely, fish treated with T. foenum-graecum seed extract showed significant improvements in body weight and length. After exposure to CuO NPs, a significant accumulation of Cu was recorded in the gills, livers, and kidneys (1.18 ± 0.006 µg/kg ww, 1.38 ± 0.006 µg/kg ww, and 0.05 ± 0.006 µg/kg ww, respectively) of the exposed common carp, and significant alterations in fish hematological parameters and oxidative stress biomarkers (lipid peroxidation (LPO), glutathione (GSH), and catalase (CAT)) were also observed. However, supplementing diets with fenugreek extracts modulated the blood parameters and the oxidative stress enzymes. Similarly, histological observations revealed that sub-lethal exposure to CuO NPs caused severe histomorphological changes in fish gills (i.e., degenerative epithelium, fused lamellae, necrotic lamellae, necrosis of primary lamellae, complete degeneration, and complete lamellar fusion), liver (i.e., degenerative hepatocytes, vacuolization, damaged central vein, dilated sinusoid, vacuolated degeneration, and complete degeneration), and kidney (i.e., necrosis and tubular degeneration, abnormal glomerulus, swollen tubules, and complete degeneration), while the treatment with the fenugreek extract significantly decreased tissue damage in a dose-dependent manner by lowering the accumulation of Cu in the selected fish tissues. Overall, this work demonstrated the ameliorative effects of dietary supplementation with T. foenum-graecum seed extract against the toxicity of NPs in aquatic organisms. The findings of this study therefore provided evidence of the promising nutraceutical value of fenugreek and enhanced its applicative potential in the sector of fish aquaculture, as it was shown to improve the growth performance and wellness of organisms.


Asunto(s)
Carpas , Nanopartículas del Metal , Trigonella , Animales , Cobre/toxicidad , Catalasa , Extractos Vegetales/farmacología , Semillas , Antioxidantes/farmacología , Glutatión , Nanopartículas del Metal/toxicidad , Biomarcadores , Óxidos , Dieta , Necrosis , Peso Corporal
10.
Environ Pollut ; 310: 119856, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944779

RESUMEN

Nowadays, marine ecosystems are under severe threat from the simultaneous presence of multiple stressors, including microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P). In addition to their presence in various marine compartments, there are increasing concerns on the potential capacity of MPs to sorb, concentrate and transfer these pollutants in the environment. Although their ecotoxicological impacts are currently evident, few works have studied the combined effects of these contaminants. Therefore, the major purpose of this work was to assess the toxicity of environmental relevant concentrations of MPs (<30 µm) and B[a]P, alone and in mixture, in the seaworm Hediste diversicolor by exploring their accumulation and hazardous biological effects for 3 and 7 days. Environmental MPs were able to increase B[a]P in a time-dependent manner. The obtained results showed that individual treatments, as well as co-exposure to contaminants, caused cytotoxicity and genotoxicity in the cœlomic fluid cells, while oxidative stress effects were observed at tissue and gene levels associated with alteration in neurotransmission. Overall, our findings provide additional clues about MPs as organic pollutant vectors in the marine environment, and contribute to a clearer understanding of their toxicological risk to aquatic invertebrates.


Asunto(s)
Contaminantes Ambientales , Poliquetos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Benzo(a)pireno , Ecosistema , Microplásticos , Plásticos
11.
Environ Sci Pollut Res Int ; 29(58): 88161-88171, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35829880

RESUMEN

Among nonsteroidal anti-inflammatory drugs (NSAIDs) commonly found in seawater and wastewater, salicylic acid (SA) represents one of the most persistent and hazardous compounds for aquatic organisms. This study was therefore designed to elucidate the biological effects of SA in mussel Mytilus galloprovincialis. During a sub-chronic exposure (12 days), mussels were exposed to five realistic concentrations of SA (C1: 0.05 µg/L; C2: 0.5 µg/L; C3: 5 µg/L; C4: 50 µg/L; C5: 100 µg/L) and gills, selected as the target organ, were collected at different time points (T3: 3 days; T5: 5 days; T12: 12 days). Exposure to SA induced no histological alterations in mussel gills, despite a relevant hemocyte infiltration was observed throughout the exposure as a defensive response to SA. Temporal modulation of glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities suggested the occurrence of antioxidant and detoxifying responses against SA exposure, while lipid peroxidation (LPO), except for a partial increase at T3, was prevented. Inhibition of the cholinergic system was also reported by reduced acetylcholinesterase (AChE) activity, mainly at T12. Overall, findings from this study contribute to enlarge the current knowledge on the cytotoxicity of SA, on non-target aquatic organisms, and might for the enhancement of new ecopharmacovigilance programs and optimization of the efficacy of wastewater treatment plants for mitigation of pharmaceutical pollution in coastal areas.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/metabolismo , Branquias/metabolismo , Ácido Salicílico/farmacología , Acetilcolinesterasa/metabolismo , Contaminantes Químicos del Agua/análisis , Catalasa/metabolismo , Peroxidación de Lípido , Glutatión Transferasa/metabolismo , Biomarcadores/metabolismo , Estrés Oxidativo
12.
Mar Pollut Bull ; 180: 113770, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35635883

RESUMEN

The present research aimed to investigate the concentrations and patterns of six potentially toxic elements (PTEs) in three common sponge species collected along the Moroccan Mediterranean coast, as well as their levels in ambient seawater and sediments. Distinct inter-species variability in PTEs bioaccumulation was observed among the three species, suggesting that sponges have distinct selectivity for assimilating PTEs from the surrounding environment. C. crambe had a higher enrichment capacity for Cu, As, Cr and Ni, while P. ficiformis and C. reniformis exhibited the highest concentration of Cd and Pb, respectively. Interestingly, a similar spatial distribution patterns of PTEs was observed in the three media, with high values occurring in Tangier and Al-Hoceima locations. Overall, our results confirm that sponges reliably reflect the bioavailability of PTEs in their immediate environment, especially C. crambe, whose PTE tissue contents were highly and positively correlated with the contents of all PTEs in the sediments.


Asunto(s)
Metales Pesados , Poríferos , Contaminantes del Suelo , Animales , Bioacumulación , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Marruecos , Medición de Riesgo , Agua de Mar , Contaminantes del Suelo/análisis
13.
Environ Toxicol Pharmacol ; 93: 103888, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35598756

RESUMEN

Urban and hospital-sourced pharmaceuticals are continuously discharged into aquatic environments, threatening biota. To date, their impact as single compounds has been widely investigated, whereas few information exists on their effects as mixtures. We assessed the time-dependent biological impact induced by environmental concentrations of caffeine alone (CAF; 5 ng/L to 10 µg/L) and its combination with salicylic acid (CAF+SA; 5 ng/L+0.05 µg/L to 10 µg/L+100 µg/L) on gills of mussel Mytilus galloprovincialis during a 12-day exposure. Although no histological alteration was observed in mussel gills, haemocyte infiltration was noticed at T12 following CAF+SA exposure, as confirmed by flow cytometry with increased hyalinocytes. Both the treatments induced lipid peroxidation and cholinergic neurotoxicity, which the antioxidant system was unable to counteract. We have highlighted the biological risks posed by pharmaceuticals on biota under environmental scenarios, contributing to the enhancement of ecopharmacovigilance programmes and amelioration of the efficacy of wastewater treatment plants.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Biomarcadores , Cafeína/toxicidad , Branquias , Preparaciones Farmacéuticas , Ácido Salicílico/toxicidad , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 838(Pt 1): 155872, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35569658

RESUMEN

Coastal areas are worldwide subject to large inputs of anthropogenic wastes that are discharged directly into inshore waters, where they will be weathered into small microplastics (MPs) of up to a size <20 µm. This study provides information about the presence of small environmental MPs (≤3 µm) in the liver of adult benthopelagic fish Serranus scriba (Linnaeus 1758), caught from three coastal regions in Tunisia distinguished by different patterns of human activity. Polymer composition in fish liver was identified using Raman microspectroscopy. Results revealed differences in the abundance, size distribution and presence of plastic additives over the investigated sites. Polyethylene-vinyl acetate (PEVA: 34% particles/g of tissue), high density polyethylene (HDPE: 24.4%) and the two smaller size classes, i.e. 3-1.2 µm and 1.2-0.45 µm, were the most abundant MPs types and size distribution found, respectively, in Bizerte channel (BC) site (Bizerte city, Tunisia). Moreover, at hepatic level data showed a significant site-dependent cytotoxicity expressed by changes in malondialdehyde (MDA) content, presence of reactive oxygen species (ROS) expressed by altered level of catalase (CAT) and glutathione-S-transferase (GST) activities and in the content of metallothioneins (MTs), as well as genotoxicity by changes in the amount of micronucleus (MN), and neurotoxicity by altered activity of acetylcholinesterase (AChE). A innovative metabolomics analysis was also performed to further investigate the distinct patterns of key metabolite changes in the liver of Serranus scriba. A total of 36 metabolites were significantly affected, mainly involved in energy, amino acid and osmolyte metabolism. These findings emphasised for the first time a close relationship between the source, abundance and size ranges of environmental MPs ≤ 3 µm and their hepatotoxicity in wild organisms.


Asunto(s)
Lubina , Enfermedad Hepática Inducida por Sustancias y Drogas , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Animales , Lubina/metabolismo , Monitoreo del Ambiente , Metabolómica , Microplásticos , Plásticos/toxicidad , Polietileno/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
15.
J Hazard Mater ; 435: 128952, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35472537

RESUMEN

The hazard of microplastic (MP) pollution in marine environments is a current concern. However, the effects of environmental microplastics combined with other pollutants are still poorly investigated. Herein, impact of ecologically relevant concentrations of environmental MP alone (50 µg/L) or combined with B[a]P (1 µg/L) was assessed in mussel Mytilus galloprovincialis after a short-term exposure (1 and 3 days) to environmental MP collected from a north-Mediterranean beach. Raman Microspectroscopy (RMS) revealed bioaccumulation in mussel hemolymph of MP, characterized by polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyethylene vinyl acetate (PEVA) and high-density polyethylene (HDPE), with abundance of MP sized 1.22-0.45 µm. An increase of B[a]P was detected in mussels after 3-day exposure, particularly when mixed with MP. Both contaminants induced cytotoxic and genotoxic effects on hemocytes as determined by lysosomal membrane stability (LMS), micronuclei frequency (FMN), and DNA fragmentation rate by terminal dUTP nick-end labeling (TUNEL). About apoptosis/DNA repair processes, P53 and DNA-ligase increased at 1-day exposure in all conditions, whereas after 3 days increase of bax, Cas-3 and P53 and decrease of Bcl-2 and DNA-ligase were revealed, suggesting a shift towards a cell apoptotic event in exposed mussels. Overall, this study provides new insights on the risk of MP for the marine ecosystem, their ability to accumulate xenobiotics and transfer them to marine biota, with potential adverse repercussion on their health status.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Benzo(a)pireno/toxicidad , ADN , Ecosistema , Ligasas/farmacología , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno/toxicidad , Proteína p53 Supresora de Tumor , Contaminantes Químicos del Agua/análisis
16.
Environ Pollut ; 302: 119106, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35248622

RESUMEN

Although the hazards of microplastics (MPs) have been quite well explored, the aberrant metabolism and the involvement of the autophagy pathway as an adverse response to environmental MPs in benthic organisms are still unclear. The present work aims to assess the impact of different environmental MPs collected from the south coast of the Mediterranean Sea, composed by polyethylene (PE), polyethylene vinyl acetate (PEVA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polyamide (PA) on the metabolome and proteome of the marine polychaete Hediste diversicolor. As a result, all the microplastic types were detected with Raman microspectroscopy in polychaetes tissues, causing cytoskeleton damage and induced autophagy pathway manifested by immunohistochemical labeling of specific targeted proteins, through Tubulin (Tub), Microtubule-associated protein light chain 3 (LC3), and p62 (also named Sequestosome 1). Metabolomics was conducted to further investigate the metabolic alterations induced by the environmental MPs-mixture in polychaetes. A total of 28 metabolites were differentially expressed between control and MPs-treated polychaetes, which showed elevated levels of amino acids, glucose, ATP/ADP, osmolytes, glutathione, choline and phosphocholine, and reduced concentration of aspartate. These novel findings extend our understanding given the toxicity of environmental microplastics and unravel their underlying mechanisms.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Autofagia , Monitoreo del Ambiente , Metabolómica , Plásticos/toxicidad , Polietileno , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Environ Toxicol Pharmacol ; 92: 103855, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35342010

RESUMEN

Despite the availability of analytic data, little is known about the toxicity of salicylic acid (SA) on aquatic non-target organisms. The present study aimed at evaluating the impact of SA through a short-term exposure of the Mediterranean mussel Mytilus galloprovincialis to five environmentally relevant concentrations of SA. A set of suitable biomarkers was applied at selected time-points on mussel digestive glands, including histological observations and expression of oxidative stress related genes. The obtained results showed a conspicuous hemocytic infiltration among mussel digestive tubules, as confirmed also by a flow cytometric approach that revealed an increase of halinocytes and granulocytes. Interestingly, a significant dose and time dependent decrease in the expression levels of oxidative stress related genes was found in mussels exposed to SA except for the glutathione S-transferase gene that was significantly up-regulated in a time-dependent manner confirming its important role against oxidant species and in the metabolism of pharmaceuticals.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Biomarcadores/metabolismo , Mytilus/metabolismo , Estrés Oxidativo/fisiología , Ácido Salicílico/toxicidad , Alimentos Marinos , Contaminantes Químicos del Agua/análisis
18.
Aquat Toxicol ; 243: 106059, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34991045

RESUMEN

Petrochemical industries and oil refineries are sources of hazardous chemicals into the aquatic environments, and often a leading cause of reduced oxygen availability, thus resulting in adverse effects in biota. This study is an expansion of our previous work on the assessment of the BioFilm-Membrane Bioreactor (BF-MBR) to mitigate the impact of oil-polluted wastewater on marine environments. Specifically, this study evaluated the reduction of selected chemical constituents (hydrocarbons and trace metals) and toxicity related to hypoxia and DNA damage to mussels Mytilus galloprovincialis, before and after treatment of oil-polluted wastewater with the BF-MBR. The application of a multidisciplinary approach provided evidence of the efficiency of BF-MBR to significantly reducing the pollutants load from oily contaminated seawaters. As result, the health status of mussels was preserved by a hypoxic condition due to oily pollutants, as evidenced by the modulation in the gene expression of HIF-1α and PHD and changes in the level of hypotaurine and taurine. Moreover, ameliorative effects in the energy metabolism were also found in mussel gills showing increased levels of glycogen, glucose and ATP, as well as a mitigated genotoxicity was revealed by the Micronucleus and Comet assays. Overall, findings from this study support the use of the BF-MBR as a promising treatment biotechnology to avoid or limiting the compromise of marine environments from oil pollution.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Biopelículas , Biomarcadores , Reactores Biológicos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/toxicidad
19.
Environ Res ; 208: 112552, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34929188

RESUMEN

In the recent years, increasing scientific and societal concern has been raised over the presence and accumulation of plastic debris in the environment and the effects of microplastics (MPs) that can easily interact with biota. In order to elucidate the impact of MPs at the critical development stages of freshwater fish species, a fish embryo toxicity test was herein performed on the zebrafish Danio rerio, exposed to 10 µm polystyrene MPs at 200 particles/mL for 120 hpf. After exposure, accumulation of MPs in larvae was measured, survival, hatching and larvae development were monitored and the oxidant/anti-oxidant responses and cellular detoxification evaluated. No impact on survival of developing zebrafish was revealed, but a moderate delay in hatching was observed. Alterations in larvae development were recorded with zebrafish exhibiting serious deformities, mainly at the level of column and tail, as well as a compromised integrity of the visual structure of the eyes. Moreover, increased levels of gene transcription involved in the oxidative stress (sod1, sod2 and cat) and in cellular detoxification (gst and cyp) were also detected in MPs-exposed zebrafish larvae. Overall, this research work provides new insights on the ecotoxicological impact of polystyrene MPs on the critical developmental stages of a freshwater fish species, therefore enhancing the current knowledge of the environmental risk posed by MPs to the aquatic ecosystem.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Microplásticos/toxicidad , Plásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética
20.
Environ Sci Technol ; 55(9): 5970-5983, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886295

RESUMEN

Persian Gulf coral reefs are unique biota communities in the global sunbelts in being able to survive in multiple stressful fields during summertime (>36 °C). Despite the high-growth emerging health-hazard microplastic additive type of contaminants, its biological interactions with coral-algal symbiosis and/or its synergistic effects linked to solar-bleaching events remain unknown. This study investigated the bioaccumulation patterns of polybrominated diphenyl ether (PBDE) and phthalate ester (PAE) pollutants in six genera of living/bleached corals in Larak Island, Persian Gulf, and their ambient abiotic matrixes. Results showed that the levels of ∑18PBDEs and ∑13PAEs in abiotic matrixes followed the order of SPMs > surface sediments > seawater, and the cnidarian POP-uptake patterns (soft corals > hard corals) were as follows: coral mucus (138.49 ± 59.98 and 71.57 ± 47.39 ng g-1 dw) > zooxanthellae (82.05 ± 28.27 and 20.14 ± 12.65 ng g-1 dw) ≥ coral tissue (66.26 ± 21.42 and 34.97 ± 26.10 ng g-1 dw) > bleached corals (45.19 ± 8.73 and 13.83 ± 7.05 ng g-1 dw) > coral skeleton (35.66 ± 9.58 and 6.47 ± 6.47 ng g-1 dw, respectively). Overall, findings suggest that mucus checking is a key/facile diagnostic approach for fast detection of POP bioaccumulation (PB) in tropical corals. Although studied corals exhibited no consensus concerning hazardous levels of PB (log BSAF < 3.7), our bleaching evidence showed soft corals as the ultimate "summer winners" due to their flexibility/recovering ability.


Asunto(s)
Antozoos , Retardadores de Llama , Animales , Arrecifes de Coral , Océano Índico , Islas , Ácidos Ftálicos , Plásticos , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA