Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(12): 113574, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100356

RESUMEN

Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss. While therapies exist to slow MS progression, no treatment currently exists for remyelination. Remyelination, linked to reduced disability in MS, relies on microglia and monocyte-derived macrophages (MDMs). This study aims to understand the role of microglia during remyelination by lineage tracing and depleting them. Microglial lineage tracing reveals that both microglia and MDMs initially accumulate, but microglia later dominate the lesion. Microglia and MDMs engulf equal amounts of inhibitory myelin debris, but after microglial depletion, MDMs compensate by engulfing more myelin debris. Microglial depletion does, however, reduce the recruitment and proliferation of oligodendrocyte progenitor cells (OPCs) and impairs their subsequent differentiation and remyelination. These findings underscore the essential role of microglia during remyelination and offer insights for enhancing this process by understanding microglial regulation of remyelination.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Remielinización , Humanos , Vaina de Mielina/patología , Microglía/patología , Enfermedades Desmielinizantes/patología , Macrófagos/patología , Esclerosis Múltiple/patología
2.
Mol Neurodegener ; 17(1): 82, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514132

RESUMEN

BACKGROUND: Microglia regulate the response to injury and disease in the brain and spinal cord. In white matter diseases microglia may cause demyelination. However, how microglia respond and regulate demyelination is not fully understood. METHODS: To understand how microglia respond during demyelination, we fed mice cuprizone-a potent demyelinating agent-and assessed the dynamics of genetically fate-mapped microglia. We then used single-cell RNA sequencing to identify and track the microglial subpopulations that arise during demyelination. To understand how microglia contribute to the clearance of dead oligodendrocytes, we ablated microglia starting at the peak of cuprizone-induced cell death and used the viability dye acridine orange to monitor apoptotic and lytic cell morphologies after microglial ablation. Lastly, we treated serum-free primary microglial cultures to model distinct aspects of cuprizone-induced demyelination and assessed the response. RESULTS: The cuprizone diet generated a robust microglial response by week 4 of the diet. Single-cell RNA sequencing at this time point revealed the presence of several cuprizone-associated microglia (CAM) clusters. These clusters expressed a transcriptomic signature indicative of cytokine regulation and reactive oxygen species production with altered lysosomal and metabolic changes consistent with ongoing phagocytosis. Using acridine orange to monitor apoptotic and lytic cell death after microglial ablation, we found that microglia preferentially phagocytose lytic carcasses. In culture, microglia exposed to lytic carcasses partially recapitulated the CAM state, suggesting that phagocytosis contributes to this distinct microglial state during cuprizone demyelination. CONCLUSIONS: Microglia serve multiple roles during demyelination, yet their transcriptomic state resembles other neurodegenerative conditions. The phagocytosis of cellular debris is likely a universal cause for a common neurodegenerative microglial state.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Ratones , Cuprizona/toxicidad , Cuprizona/metabolismo , Microglía/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Transcriptoma , Naranja de Acridina/efectos adversos , Naranja de Acridina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
Nat Chem Biol ; 18(9): 925-933, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995862

RESUMEN

Remyelination, or the restoration of myelin sheaths around axons in the central nervous system, is a multi-stage repair process that remains a major need for millions of patients with multiple sclerosis and other diseases of myelin. Even into adulthood, rodents and humans can generate new myelin-producing oligodendrocytes, leading to the therapeutic hypothesis that enhancing remyelination could lessen disease burden in multiple sclerosis. Multiple labs have used phenotypic screening to identify dozens of drugs that enhance oligodendrocyte formation, and several hit molecules have now advanced to clinical evaluation. Target identification studies have revealed that a large majority of these hits share the ability to inhibit a narrow range of cholesterol pathway enzymes and thereby induce cellular accumulation of specific sterol precursors to cholesterol. This Perspective surveys the recent fruitful intersection of chemical biology and remyelination and suggests multiple approaches toward new targets and lead molecules to promote remyelination.


Asunto(s)
Esclerosis Múltiple , Remielinización , Adulto , Colesterol/metabolismo , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Remielinización/fisiología
4.
Mol Neurodegener ; 17(1): 34, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526004

RESUMEN

BACKGROUND: The dietary consumption of cuprizone - a copper chelator - has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action 'intrinsic cell damage'. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells - neutrophils or T-cells. We term this mode of action 'extrinsic cellular damage'. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Astrocitos/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Vaina de Mielina , Oligodendroglía/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593907

RESUMEN

The molecular composition of myelin membranes determines their structure and function. Even minute changes to the biochemical balance can have profound consequences for axonal conduction and the synchronicity of neural networks. Hypothesizing that the earliest indication of myelin injury involves changes in the composition and/or polarity of its constituent lipids, we developed a sensitive spectroscopic technique for defining the chemical polarity of myelin lipids in fixed frozen tissue sections from rodent and human. The method uses a simple staining procedure involving the lipophilic dye Nile Red, whose fluorescence spectrum varies according to the chemical polarity of the microenvironment into which the dye embeds. Nile Red spectroscopy identified histologically intact yet biochemically altered myelin in prelesioned tissues, including mouse white matter following subdemyelinating cuprizone intoxication, as well as normal-appearing white matter in multiple sclerosis brain. Nile Red spectroscopy offers a relatively simple yet highly sensitive technique for detecting subtle myelin changes.


Asunto(s)
Esclerosis Múltiple/patología , Vaina de Mielina/química , Oligodendroglía/patología , Oxazinas/química , Espectrometría de Fluorescencia/métodos , Anciano , Animales , Estudios de Casos y Controles , Línea Celular , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Colorantes Fluorescentes , Sustancia Gris/química , Sustancia Gris/citología , Humanos , Lípidos/química , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Oligodendroglía/química , Sustancia Blanca/química , Sustancia Blanca/citología
6.
Mult Scler ; 27(7): 1046-1056, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32779553

RESUMEN

BACKGROUND: The balance of tissue injury and repair ultimately determines outcomes of chronic neurological disorders, such as progressive multiple sclerosis (MS). However, the extent of pathology can be difficult to detect, particularly when it is insidious and/or offset by tissue regeneration. OBJECTIVES: The objective of this research is to evaluate whether tissue autofluorescence-typically a source of contamination-provides a surrogate marker of white matter injury. METHODS: Tissue autofluorescence in autopsied specimens both experimental and clinical was characterized by spectral confocal microscopy and correlated to severity and chronicity as determined by standard histopathology. RESULTS: Months after cuprizone (CPZ)-induced demyelination, despite robust remyelination, autofluorescent deposits progressively accumulated in regions of prior pathology. Autofluorescent deposits (likely reflecting myelin debris remnants) were conspicuously localized to white matter, proportional to lesion severity, and displayed differential fluorescence over time. Strikingly, similar features were apparent also in autopsied MS tissue. CONCLUSION: Autofluorescence spectroscopy illuminates prior and ongoing white matter injury. The accumulation of autofluorescence in proportion to the extent of progressive atrophy, despite robust remyelination in the CPZ brain, provides important proof-of-concept of a phenomenon (insidious ongoing damage masked by mechanisms of tissue repair) that we hypothesize is highly relevant to the progressive phase of MS.


Asunto(s)
Enfermedades Desmielinizantes , Sustancia Blanca , Animales , Cuprizona , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina , Análisis Espectral , Sustancia Blanca/diagnóstico por imagen
7.
Sci Adv ; 6(3): eaay6324, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31998844

RESUMEN

Microglia and infiltrating macrophages are thought to orchestrate the central nervous system (CNS) response to injury; however, the similarities between these cells make it challenging to distinguish their relative contributions. We genetically labeled microglia and CNS-associated macrophages to distinguish them from infiltrating macrophages. Using single-cell RNA sequencing, we describe multiple microglia activation states, one of which was enriched for interferon associated signaling. Although blood-derived macrophages acutely infiltrated the demyelinated lesion, microglia progressively monopolized the lesion environment where they surrounded infiltrating macrophages. In the microglia-devoid sciatic nerve, the infiltrating macrophage response was sustained. In the CNS, the preferential proliferation of microglia and sparse microglia death contributed to microglia dominating the lesion. Microglia ablation reversed the spatial restriction of macrophages with the demyelinated spinal cord, highlighting an unrealized macrophages-microglia interaction. The restriction of peripheral inflammation by microglia may be a previously unidentified mechanism by which the CNS maintains its "immune privileged" status.


Asunto(s)
Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Microglía/inmunología , Microglía/metabolismo , Apoptosis/genética , Biomarcadores , Proliferación Celular , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Biología Computacional/métodos , Enfermedades Desmielinizantes/patología , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/patología , Transcriptoma
8.
DNA Cell Biol ; 38(3): 219-222, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30461299

RESUMEN

The earliest and most proximal triggers of inflammatory demyelination in multiple sclerosis (MS) remain an open question. In this DNACB review we address experimental and clinical evidence consistent with subtle perturbations of the axo-myelinic compartment of central nervous system white matter as initiation sites of secondary autoimmune demyelination in MS. Strengthened by experimental evidence that by inhibiting myelinopathy one can prevent inflammatory demyelination, myelin-protective therapies may represent a new class of anti-inflammatory medications for combating myelin autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Esclerosis Múltiple/inmunología , Vaina de Mielina/inmunología , Animales , Antiinflamatorios/uso terapéutico , Sistema Nervioso Central , Enfermedades Desmielinizantes/inmunología , Humanos
9.
Proc Natl Acad Sci U S A ; 115(21): 5528-5533, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29728463

RESUMEN

Although immune attack against central nervous system (CNS) myelin is a central feature of multiple sclerosis (MS), its root cause is unresolved. In this report, we provide direct evidence that subtle biochemical modifications to brain myelin elicit pathological immune responses with radiological and histological properties similar to MS lesions. A subtle myelinopathy induced by abbreviated cuprizone treatment, coupled with subsequent immune stimulation, resulted in lesions of inflammatory demyelination. The degree of myelin injury dictated the resulting immune response; biochemical damage that was too limited or too extensive failed to trigger overt pathology. An inhibitor of peptidyl arginine deiminases (PADs), enzymes that alter myelin structure and correlate with MS lesion severity, mitigated pathology even when administered only during the myelin-altering phase. Moreover, cultured splenocytes were reactive against donor myelin isolates, a response that was substantially muted when splenocytes were exposed to myelin from donors treated with PAD inhibitors. By showing that a primary biochemical myelinopathy can trigger secondary pathological inflammation, "cuprizone autoimmune encephalitis" potentially reconciles conflicting theories about MS pathogenesis and provides a strong rationale for investigating myelin as a primary target for early, preventative therapy.


Asunto(s)
Enfermedades Desmielinizantes/etiología , Modelos Animales de Enfermedad , Encefalitis/patología , Enfermedad de Hashimoto/patología , Inflamación/patología , Esclerosis Múltiple/etiología , Vaina de Mielina/patología , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/patología , Encefalitis/inducido químicamente , Encefalitis/inmunología , Enfermedad de Hashimoto/inducido químicamente , Enfermedad de Hashimoto/inmunología , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Inflamación/inducido químicamente , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidores de la Monoaminooxidasa/toxicidad , Esclerosis Múltiple/patología , Vaina de Mielina/inmunología , Vaina de Mielina/metabolismo
11.
Sci Rep ; 8(1): 607, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330383

RESUMEN

Central nervous system (CNS) demyelination represents the pathological hallmark of multiple sclerosis (MS) and contributes to other neurological conditions. Quantitative and specific imaging of demyelination would thus provide critical clinical insight. Here, we investigated the possibility of targeting axonal potassium channels to image demyelination by positron emission tomography (PET). These channels, which normally reside beneath the myelin sheath, become exposed upon demyelination and are the target of the MS drug, 4-aminopyridine (4-AP). We demonstrate using autoradiography that 4-AP has higher binding in non-myelinated and demyelinated versus well-myelinated CNS regions, and describe a fluorine-containing derivative, 3-F-4-AP, that has similar pharmacological properties and can be labeled with 18F for PET imaging. Additionally, we demonstrate that [18F]3-F-4-AP can be used to detect demyelination in rodents by PET. Further evaluation in Rhesus macaques shows higher binding in non-myelinated versus myelinated areas and excellent properties for brain imaging. Together, these data indicate that [18F]3-F-4-AP may be a valuable PET tracer for detecting CNS demyelination noninvasively.


Asunto(s)
4-Aminopiridina/administración & dosificación , Enfermedades Desmielinizantes/diagnóstico por imagen , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Canales de Potasio/metabolismo , 4-Aminopiridina/química , 4-Aminopiridina/farmacología , Animales , Enfermedades Desmielinizantes/metabolismo , Femenino , Humanos , Macaca mulatta , Masculino , Ratones , Trazadores Radiactivos , Ratas
12.
Glia ; 66(2): 327-347, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29068088

RESUMEN

For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/toxicidad , Lípidos de la Membrana/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Animales , Células Cultivadas , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Femenino , Inyecciones Intraventriculares , Lisofosfatidilcolinas/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
Nat Rev Neurosci ; 19(1): 49-58, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118449

RESUMEN

It is widely recognized that myelination of axons greatly enhances the speed of signal transmission. An exciting new finding is the dynamic communication between axons and their myelin-forming oligodendrocytes, including activity-dependent signalling from axon to myelin. The oligodendrocyte-myelin complex may in turn respond by providing metabolic support or alter subtle myelin properties to modulate action potential propagation. In this Opinion, we discuss what is known regarding the molecular physiology of this novel, synapse-like communication and speculate on potential roles in disease states including multiple sclerosis, schizophrenia and Alzheimer disease. An emerging appreciation of the contribution of white-matter perturbations to neurological dysfunction identifies the axo-myelinic synapse as a potential novel therapeutic target.


Asunto(s)
Axones/fisiología , Encefalopatías/fisiopatología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Transmisión Sináptica/fisiología , Animales , Sistema Nervioso Central/fisiología , Humanos , Modelos Neurológicos
14.
Nat Rev Neurosci ; 19(1): 58, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29238086

RESUMEN

This corrects the article DOI: 10.1038/nrn.2017.128.

15.
J Cell Biol ; 216(4): 1163-1181, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28264914

RESUMEN

Cellular injury and death are ubiquitous features of disease, yet tools to detect them are limited and insensitive to subtle pathological changes. Acridine orange (AO), a nucleic acid dye with unique spectral properties, enables real-time measurement of RNA and DNA as proxies for cell viability during exposure to various noxious stimuli. This tool illuminates spectral signatures unique to various modes of cell death, such as cells undergoing apoptosis versus necrosis/necroptosis. This new approach also shows that cellular RNA decreases during necrotic, necroptotic, and apoptotic cell death caused by demyelinating, ischemic, and traumatic injuries, implying its involvement in a wide spectrum of tissue pathologies. Furthermore, cells with pathologically low levels of cytoplasmic RNA are detected earlier and in higher numbers than with standard markers including TdT-mediated dUTP biotin nick-end labeling and cleaved caspase 3 immunofluorescence. Our technique highlights AO-labeled cytoplasmic RNA as an important early marker of cellular injury and a sensitive indicator of various modes of cell death in a range of experimental models.


Asunto(s)
Naranja de Acridina/metabolismo , Apoptosis/fisiología , Muerte Celular/fisiología , Necrosis/patología , Ácidos Nucleicos/metabolismo , Animales , Caspasa 3/metabolismo , Línea Celular , Nucleótidos de Desoxiuracil/metabolismo , Humanos , Etiquetado Corte-Fin in Situ/métodos , Ratones Endogámicos C57BL , Necrosis/metabolismo , ARN/metabolismo
16.
Bioorg Med Chem ; 25(9): 2643-2656, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28341402

RESUMEN

Protein arginine deiminases (PAD) are implicated in a variety of inflammatory and neurodegenerative diseases including multiple sclerosis (MS). Following the discovery of an in silico hit containing hydantoin and a piperidine moiety, we hypothesized that a 2-carbon linker on the hydantoin would be necessary for a 5-membered heterocycle for optimal PAD inhibitory activity. We designed thirteen compounds as potential inhibitors of PAD2 and PAD4 enzymes-two important PAD enzymes implicated in MS. Two compounds, one with an imidazole moiety (22) and the other with a tetrazole moiety (24) showed good inhibition of PAD isozymes in vitro and in the EAE mouse model of MS in vivo. Further experiments suggested that compound 22, a non-covalent inhibitor of PAD2 and PAD4, exhibits dose-dependent efficacy in the EAE mouse model and in the cuprizone-mediated demyelination model.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Hidantoínas/uso terapéutico , Hidrolasas/antagonistas & inhibidores , Imidazoles/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Tetrazoles/uso terapéutico , Animales , Encéfalo/patología , Dominio Catalítico , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Encefalitis/inducido químicamente , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Femenino , Semivida , Humanos , Hidantoínas/administración & dosificación , Hidantoínas/química , Hidantoínas/farmacocinética , Imidazoles/administración & dosificación , Imidazoles/química , Imidazoles/farmacocinética , Isoenzimas/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Mielitis/inducido químicamente , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/uso terapéutico , Médula Espinal/patología , Tetrazoles/administración & dosificación , Tetrazoles/química , Tetrazoles/farmacocinética
17.
J Neurosci ; 35(41): 14031-41, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468203

RESUMEN

During mammalian development, myelin-forming oligodendrocytes are generated and axons ensheathed according to a tightly regulated sequence of events. Excess premyelinating oligodendrocytes are eliminated by apoptosis and the timing of the onset of myelination in any specific CNS region is highly reproducible. Although the developing CNS recovers more effectively than the adult CNS from similar insults, it is unknown whether early loss of oligodendrocyte lineage cells leads to long-term functional deficits. To directly assess whether the loss of oligodendrocytes during early postnatal spinal cord development impacted oligodendrogenesis, myelination, and remyelination, transgenic mouse lines were generated in which a modified caspase-9 molecule allowed spatial and temporal control of the apoptotic pathway specifically in mature, myelin basic protein expressing oligodendrocytes (MBP-iCP9). Activating apoptosis in MBP(+) cells of the developing spinal cord during the first postnatal week inhibited myelination. This inhibition was transient, and the levels of myelination largely returned to normal after 2 weeks. Despite robust developmental plasticity, MBP-iCP9-induced oligodendrocyte apoptosis compromised the rate and extent of adult remyelination. Remyelination failure correlated with a truncated proliferative response of oligodendrocyte progenitor cells, suggesting that depleting the oligodendrocyte pool during critical developmental periods compromises the regenerative response to subsequent demyelinating lesions. SIGNIFICANCE STATEMENT: This manuscript demonstrates that early insults leading to oligodendrocyte apoptosis result in the impairment of recovery from demyelinating diseases in the adult. These studies begin to provide an initial understanding of the potential failure of recovery in insults, such as periventricular leukomalacia and multiple sclerosis.


Asunto(s)
Apoptosis/genética , Enfermedades Desmielinizantes , Oligodendroglía/patología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Factores de Edad , Animales , Animales Recién Nacidos , Caspasa 9/genética , Caspasa 9/metabolismo , Células Cultivadas , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Dimerización , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Lisofosfatidilcolinas/farmacología , Masculino , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/genética , Oligodendroglía/ultraestructura , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Tubulina (Proteína)/metabolismo
18.
Dev Cell ; 34(2): 152-67, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26166300

RESUMEN

Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/metabolismo , Animales , Axones/fisiología , Membrana Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Sistema Nervioso Central/embriología , Cofilina 1/genética , Gelsolina/genética , Gelsolina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Nervio Óptico/metabolismo , Nervio Óptico/fisiología , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley
19.
Nat Biotechnol ; 31(5): 426-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23584611

RESUMEN

Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelin. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.


Asunto(s)
Fibroblastos/citología , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Oligodendroglía/fisiología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Animales , Diferenciación Celular , Fibroblastos/fisiología , Mejoramiento Genético/métodos , Ratones , Trasplante de Células Madre/métodos
20.
Ann Neurol ; 72(3): 395-405, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23034912

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that presents with variable pathologies that may reflect different disease-causing mechanisms. Existing animal models of MS induce pathology using either local injection of gliotoxins or stimulation of the immune system with myelin-related peptides. In none of these models is the primary cellular target well characterized, and although demyelination is a hallmark pathological feature in MS, it is unclear to what extent this reflects local oligodendrocyte loss. To unambiguously identify the effects of oligodendrocyte death in the absence of inflammatory stimulation, we developed a method for experimentally inducing programmed cell death selectively in mature oligodendrocytes and assessed the effects on demyelination, immunological stimulation, and gliosis. The resulting pathology is discussed relative to observed MS pathologies. METHODS: Oligodendrocyte apoptosis was induced in the adult rat brain using a lentivirus to express experimentally inducible caspase 9 (iCP9) cDNA under transcriptional control of the promoter for myelin basic protein, which is oligodendrocyte-specific. Activation of iCP9 was achieved by distal injection of a small molecule dimerizer into the lateral ventricle resulting in localized, acute oligodendrocyte apoptosis. RESULTS: Induced oligodendrocyte apoptosis resulted in rapid demyelination and robust, localized microglial activation in the absence of peripheral immune cell infiltration. Lesion borders showed layers of preserved and degraded myelin, whereas lesion cores were demyelinated but only partially cleared of myelin debris. This resulted in local proliferation and mobilization of the oligodendrocyte progenitor pool. INTERPRETATION: This approach provides a novel model to understand the pathological changes that follow from localized apoptosis of myelinating oligodendrocytes. It provides the first direct proof that initiation of apoptosis in oligodendrocytes is sufficient to cause rapid demyelination, gliosis, and a microglial response that result in lesions sharing some pathological characteristics with a subset of MS lesions.


Asunto(s)
Apoptosis/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades Desmielinizantes/patología , Oligodendroglía/fisiología , Animales , Apoptosis/genética , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/citología , Encéfalo/efectos de los fármacos , Caspasa 9/genética , Caspasa 9/metabolismo , Recuento de Células , Células Cultivadas , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Gangliósidos/metabolismo , Proteína Ácida Fibrilar de la Glía , Gliotoxina/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunosupresores/farmacología , Proteína Básica de Mielina , Proteínas del Tejido Nervioso/metabolismo , Antígenos O/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Multimerización de Proteína/efectos de los fármacos , Ratas , Tacrolimus/farmacología , Transducción Genética/métodos , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...