Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ScientificWorldJournal ; 2016: 1678541, 2016.
Article En | MEDLINE | ID: mdl-28004032

Lactation is an important function that is dependent on changes in the maternal homeostasis and sustained by histological maternal adjustments. We evaluated how offspring manipulations during the lactational phase can modulate maternal morphologic aspects in the mammary gland, adipose tissue, and pancreatic islets of lactating dams. Two different models of litter-manipulation-during-lactation were used: litter sizes, small litters (SL) or normal litters (NL) and subcutaneous injections in the puppies of monosodium glutamate (MSG), or saline (CON). SL Dams and MSG Dams presented an increase in WAT content and higher plasma levels of glucose, triglycerides, and insulin, in relation to NL Dams and CON Dams, respectively. The MG of SL Dams and MSG Dams presented a high adipocyte content and reduced alveoli development and the milk of the SL Dams presented a higher calorie and triglyceride content, compared to that of the NL Dams. SL Dams presented a reduction in islet size and greater lipid droplet accumulation in BAT, in relation to NL Dams. SL Dams and MSG Dams present similar responses to offspring manipulation during lactation, resulting in changes in metabolic parameters. These alterations were associated with higher fat accumulation in BAT and changes in milk composition only in SL Dams.


Lactation/metabolism , Milk/chemistry , Sodium Glutamate/administration & dosage , Adipose Tissue/anatomy & histology , Animals , Dogs , Female , Islets of Langerhans/anatomy & histology , Litter Size , Mammary Glands, Animal/anatomy & histology
2.
Clin Nutr ESPEN ; 10(1): e13-e20, 2015 Feb.
Article En | MEDLINE | ID: mdl-28531442

BACKGROUND & AIMS: Reduction in litter size during lactation induces hypernutrition of the offspring culminating with altered metabolic programming during adult life. Overnourished rats present alterations in the endocrine pancreas and major predisposition to the development of type 2 diabetes. Our study evaluated the impact of swimming training on insulin secretion control in overnourished rats. METHODS: At postnatal day 3 male rat pup litters were redistributed randomly into Small Litters (SL, 3 pups) or Normal Litters (NL, 9 pups) to induce early overfeeding during lactation. Both groups were subjected to swimming training (3 times/week/30 min) post-weaning (21 days) for 72 days. At 92 days of life pancreatic islets were isolated using collagenase technique and incubated with glucose in the presence or absence of acetylcholine (Ach, 0.1-1000 µM) or glucagon-like peptide 1 (GLP1, 10 nM). Adipose tissue depots (white and brown) and endocrine pancreas samples were examined by histological analysis. Food intake and body weight were measured. Blood biochemical parameters were also evaluated. RESULTS: Swimming training prevented metabolic program alteration by hypernutrition during lactation. Exercise reduced obesity and hyperglycemia in overnourished rats. Pancreatic islets isolated from overnourished rats showed a reduction in glucose-induced insulin secretion and cholinergic responses while the insulinotropic action of GLP1 was increased. Physical training effectively restored glucose-induced insulin secretion and GLP1-stimulated action in pancreatic islets from overnourished rats. However, swimming training did not correct the weak cholinergic response in pancreatic islets isolated from overnourished rats. CONCLUSIONS: Swimming training avoids obesity development, corrects glucose-induced insulin secretion, as well as, GLP1 insulinotropic response in overnourished rats.

...