Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Animals (Basel) ; 13(1)2022 Dec 25.
Article En | MEDLINE | ID: mdl-36611689

We investigated the relationship between age and body length, and age at sexual maturity of Physeter macrocephalus individuals stranded along the Italian coast. Our molecular analysis shows that all our samples belong to the C.001.002 haplotype, shared between Atlantic and Mediterranean populations. We show that males attain sexual maturity at 10 years, similar to those from other marine areas. However, considering the same body length class, Mediterranean males are older than Atlantic ones. Our finding of a Mediterranean pregnant female of only 6.5 m in length and an assessed age of 24-26 years is particularly noteworthy, considering that females reach sexual maturity at about 9 years and 9 m of total length in other regions. Comparing our results with the literature data, we highlight the positive correlation between lifespan, adult body length and weight of males from the Mediterranean and Atlantic Ocean. Regardless of whether the relatively small size of Mediterranean specimens is a consequence of an inbreeding depression or an adaptation to less favorable trophic conditions, we recommend to closely monitor this population from a conservation perspective. In fact, its low genetic diversity likely corresponds to a relatively limited ability to respond to environmental changes compared with other populations.

2.
PeerJ ; 8: e9518, 2020.
Article En | MEDLINE | ID: mdl-33194325

BACKGROUND: The Mediterranean swordfish stock is overfished and considered not correctly managed. Elucidating the patterns of the Mediterranean swordfish population structure constitutes an essential prerequisite for effective management of this fishery resource. To date, few studies have investigated intra-Mediterranean swordfish population structure, and their conclusions are controversial. METHODS: A panel of 20 microsatellites DNA was used to investigate fine-scale population structuring of swordfish from six main fishing areas of the Mediterranean Sea. RESULTS: This study provides evidence to reject the hypothesis of a single swordfish population within the Mediterranean Sea. DAPC analysis revealed the presence of three genetic clusters and a high level of admixture within the Mediterranean Sea. Genetic structure was supported by significant F ST values while mixing was endorsed by the heterozygosity deficit observed in sampling localities indicative of a possible Wahlund effect, by sampling admixture individuals. Overall, our tests reject the hypothesis of a single swordfish population within the Mediterranean Sea. Homing towards the Mediterranean breeding areas may have generated a weak degree of genetic differentiation between populations even at the intra-basin scale.

3.
J Exp Zool B Mol Dev Evol ; 334(3): 178-191, 2020 05.
Article En | MEDLINE | ID: mdl-32061054

Two satellite DNAs (satDNAs) have been isolated and characterized from three populations of Atlantolacerta andreanskyi. One satDNA (AAN-TaqI) has been isolated here from the first time. It is characterized by a tendency to AT enrichment (AT = 54.2%) and monomer length ranging from 187 to 199 bp. FISH experiments showed that this element occurs in subterminal position on the short arms of all chromosomes of the complement. The analyses of genetic variability of AAN-TaqI showed that the concerted evolution is acting effectively on these repeats that form separate clusters consistent with the geographic origin in the phylogenetic tree, thus supporting the hypothesis that A. andreanskyi would be a species complex. In addition, in the population from Jbel Aoulime this satDNA is already differentiated into two subfamilies. The other satDNA belongs to the family of IMO-TaqI already isolated in other lacertids. Differently from AAN-TaqI, concerted evolution does not seem to act effectively on this element that is not differentiated between populations. These results confirm that IMO-TaqI (AT = 53.4%) is conserved in both chromosomal position and most of its sequence in the lacertids from which it has been characterized so far. Its remarkable evolutionary conservation for about 45 million years could indicate that this satDNA may have a functional role that future investigations could unveil. Once again, this study shows how satDNAs coexisting in the same genome may differ in their evolutionary pattern, even though the reasons underlying this phenomenon in the species here studied have still to be fully understood.


DNA, Satellite/genetics , Lizards/genetics , Animals , Base Sequence , Female , Karyotype , Male , Phylogeny
5.
Cytogenet Genome Res ; 157(1-2): 115-122, 2019.
Article En | MEDLINE | ID: mdl-30820011

Pleurodont lizards are characterized by an ancient system of sex chromosomes. Along with stability of the central component of the system (homologous to the X chromosome of Anolis carolinensis [Dactyloidae], ACAX), in some genera the ancestral sex chromosomes are fused with microautosomes, forming neo-sex chromosomes. The genus Ctenonotus (Dactyloidae) is characterized by multiple X1X1X2X2/X1X2Y sex chromosomes. According to cytogenetic data, the large neo-Y chromosome is formed by fusion of the ancestral Y chromosome with 2 microautosomes (homologous to ACA10 or ACA11 and ACA12), the X1 chromosome is formed by fusion of the ancestral X chromosome with the autosome homologous to ACA10 or ACA11, and the X2 chromosome is homologous to autosome ACA12. To determine more precisely the content and evolution of the Ctenonotus sex chromosomes, we sequenced flow-sorted chromosomes (both sex chromosomes and microautosomes as control) of 2 species with a similar system: C. pogus and C. sabanus. Our results indicate that the translocated part of the X1 is homologous to ACA11, X2 is homologous to ACA12, and the Y contains segments homologous to both ACA11 and ACA12. Molecular divergence estimates suggest that the ancestral X-derived part has completely degenerated in the Y of Ctenonotus, similar to the degeneration of the Norops sagrei Y chromosome (Dactyloidae). The newly added regions show loss of DNA content, but without degeneration of the conserved regions. We hypothesize that the translocation of autosomal blocks onto sex chromosomes facilitated rapid degeneration of the pseudoautosomal region on the ancestral Y.


High-Throughput Nucleotide Sequencing/methods , Lizards/genetics , X Chromosome/genetics , Y Chromosome/genetics , Animals , Chromosome Painting/methods , Chromosomes/genetics , DNA/chemistry , DNA/genetics , DNA/metabolism , Female , Lizards/classification , Male , Species Specificity , Translocation, Genetic
6.
J Exp Zool B Mol Dev Evol ; 330(2): 83-95, 2018 03.
Article En | MEDLINE | ID: mdl-29424472

In this study, IMO-TaqI satDNA, previously isolated in several species of Lacertidae, was isolated and characterized from four species of the genus Lacerta and three of the genus Timon. The aim was to gain further insights into the evolutionary dynamics of this satDNA, its occurrence among lacertids and to understand if it plays any role in sex chromosome evolution in these seven species. The results here obtained highlighted the presence of this repetitive element in the genome of all the species investigated, thus indicating that IMO-TaqI satDNA is evolutionary conserved among a wide variety of lacertids. In addition, this element was found to be very abundant in the constitutive heterochromatin of the W-sex chromosome of the four Lacerta species investigated. The occurrence of IMO-TaqI satDNA on Lacerta heterochromosome suggests that it is involved in the differentiation of the W chromosome by heterochromatinization, and the fact that it is absent in the W of other lacertids investigated seems to confirm that repetitive DNA sequences would remain randomly trapped into the sex chromosomes, undergoing amplification as a consequence of the suppression of recombination.


DNA, Satellite/genetics , Lizards/genetics , Sex Chromosomes/genetics , Animals , Base Sequence , Female , Genetic Variation , In Situ Hybridization, Fluorescence , Male , Phylogeography
7.
Cytogenet Genome Res ; 153(2): 86-95, 2017.
Article En | MEDLINE | ID: mdl-29183018

Acanthodactylus lineomaculatus is now regarded as an ecotype of A. erythrurus with which it has been recently synonymized. Despite the wide range of A. erythrurus, karyological data for this species are scarce and limited to classical cytogenetic studies carried out in individuals from only 2 locations (central Spain and Spanish enclave of Melilla on the northwestern Mediterranean Moroccan coast). Here, for the first time, we cytogenetically characterized individuals of A. lineomaculatus from the southwestern Moroccan Atlantic coast with the aim to increase the karyological knowledge of this wide-ranging species and to assess if any chromosomal changes can be found in this ecotype in comparison to other populations of this species. The diploid number of the individuals investigated is 2n = 38 which is typical of most lacertids. Active NORs were located telomerically in a medium-small pair of chromosomes, and no inactive NORs were detected. C-banding revealed an intensely heterochromatic W chromosome composed of AT-rich (centromere and long arm telomeric region) and GC-rich (most of the long arm) regions, with extended interstitial telomeric sequences. These telomere-like repeats occupy the GC-rich heterochromatin of the W. The DNA composition of the W represents a trait distinguishing A. lineomaculatus (southwestern Morocco) from A. erythrurus from Spain that possess a DAPI-positive (AT-rich) W chromosome. In conclusion, these results add further evidence to the remarkable karyotype conservation in lacertid lizards, although differences in NOR location and in W chromosome structure among populations could suggest an incipient speciation mediated by chromosome changes in this wide-ranging lizard species.


Biological Evolution , Lizards/genetics , Sex Chromosomes/genetics , Animals , Antigens, Nuclear/genetics , Cells, Cultured , Chromosome Banding , DNA, Ribosomal/genetics , Female , In Situ Hybridization, Fluorescence , Karyotyping , Male , Morocco , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Species Specificity
8.
Sci Rep ; 7(1): 4180, 2017 06 23.
Article En | MEDLINE | ID: mdl-28646131

Anchovies represent the largest world's marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.


Fishes/genetics , Genetic Variation , Animals , Biomass , Diet , Environment , Europe , Genetic Loci , Genetics, Population , Geography , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis
9.
Mar Environ Res ; 127: 137-147, 2017 Jun.
Article En | MEDLINE | ID: mdl-28411869

Natural/synthetic Endocrine Disrupting Chemicals (EDCs) may display estrogenic activity and a lower potency than 17ß-estradiol. Nonetheless, their concentrations and additive effects can affect the endocrine system and reproductive processes related to the Hypothalamic-Pituitary-Gonadal (HPG) axis. Because of their persistence in both the environment and biological systems, they ultimately target multi-level predators, including humans. We detected presence and effects of xenobiotics on wild anchovy Engraulis encrasicolus in the Western Adriatic Sea. Twenty-one PCBs and five organochlorines were detected on the order of ng g-1; vitellogenin, vitellogenin receptor and genes encoding for the zona radiata proteins were evaluated in gonad and/or liver and found transcribed in male specimens; in addition, intersex was histologically identified in the 13% of testis. Our results have developed the understanding of the European anchovy's reproductive toxicological risk and our approach could assist the comprehension of the complex dynamics of commercially relevant Teleost species.


Endocrine Disruptors/analysis , Fishes/physiology , Water Pollutants, Chemical/analysis , Animals , Disorders of Sex Development , Endocrine Disruptors/toxicity , Environmental Monitoring , Hydrocarbons, Chlorinated , Male , Polychlorinated Biphenyls , Water Pollutants, Chemical/toxicity
10.
PLoS One ; 11(6): e0157975, 2016.
Article En | MEDLINE | ID: mdl-27331397

In this pilot study for the first time, ancient DNA has been extracted from bone remains of Salmo trutta. These samples were from a stratigraphic succession located in a coastal cave of Calabria (southern Italy) inhabited by humans from upper Palaeolithic to historical times. Seven pairs of primers were used to PCR-amplify and sequence from 128 to 410 bp of the mtDNA control region of eleven samples. Three haplotypes were observed: two (ADcs-1 and MEcs-1) already described in rivers from the Italian peninsula; one (ATcs-33) belonging to the southern Atlantic clade of the AT Salmo trutta mtDNA lineage (sensu Bernatchez). The prehistoric occurrence of this latter haplotype in the water courses of the Italian peninsula has been detected for the first time in this study. Finally, we observed a correspondence between frequency of trout remains and variation in haplotype diversity that we related with ecological and demographic changes resulting from a period of rapid cooling known as the Younger Dryas.


Climate , DNA, Ancient/analysis , Paleontology , Trout/genetics , Animals , Base Sequence , Bone and Bones/anatomy & histology , Calibration , Fossils , Geography , Greenland , Haplotypes/genetics , Italy , Mediterranean Region , Mitochondria/genetics , Time Factors
11.
PLoS One ; 11(4): e0153061, 2016.
Article En | MEDLINE | ID: mdl-27074008

The sustained exploitation of marine populations requires an understanding of a species' adaptive seascape so that populations can track environmental changes from short- and long-term climate cycles and from human development. The analysis of the distributions of genetic markers among populations, together with correlates of life-history and environmental variability, can provide insights into the extent of adaptive variation. Here, we examined genetic variability among populations of mature European anchovies (n = 531) in the Adriatic (13 samples) and Tyrrhenian seas (2 samples) with neutral and putative non-neutral microsatellite loci. These genetic markers failed to confirm the occurrence of two anchovy species in the Adriatic Sea, as previously postulated. However, we found fine-scale population structure in the Adriatic, especially in northern areas, that was associated with four of the 13 environmental variables tested. Geographic gradients in sea temperature, salinity and dissolved oxygen appear to drive adaptive differences in spawning time and early larval development among populations. Resolving adaptive seascapes in Adriatic anchovies provides a means to understand mechanisms underpinning local adaptation and a basis for optimizing exploitation strategies for sustainable harvests.


Biodiversity , Fishes/genetics , Genetic Variation , Microsatellite Repeats , Animals , Environment , Genetic Markers , Genetics, Population , Genotype , Oceans and Seas
12.
PLoS One ; 11(3): e0151507, 2016.
Article En | MEDLINE | ID: mdl-26982808

It is well known that temporal fluctuations in small populations deeply influence evolutionary potential. Less well known is whether fluctuations can influence the evolutionary potentials of species with large census sizes. Here, we estimated genetic population parameters from as survey of polymorphic microsatellite DNA loci in archived otoliths from Adriatic European anchovy (Engraulis encrasicolus), a fish with large census sizes that supports numerous local fisheries. Stocks have fluctuated greatly over the past few decades, and the Adriatic fishery collapsed in 1987. Our results show a significant reduction of mean genetic parameters as a consequence of the population collapse. In addition, estimates of effective population size (Ne) are much smaller than those expected in a fishes with large population census sizes (Nc). Estimates of Ne indicate low effective population sizes, even before the population collapse. The ratio Ne/Ne ranged between 10-6 and 10-8, indicating a large discrepancy between the anchovy gene pool and population census size. Therefore, anchovy populations may be more vulnerable to fishery effort and environmental change than previously thought.


Fishes/genetics , Genetic Variation , Animals , Microsatellite Repeats/genetics
13.
Chromosome Res ; 23(3): 441-61, 2015 Sep.
Article En | MEDLINE | ID: mdl-26384818

Satellite DNAs compose a large portion of all higher eukaryotic genomes. The turnover of these highly repetitive sequences is an important element in genome organization and evolution. However, information about the structure and dynamics of reptilian satellite DNA is still scarce. Two satellite DNA families, HindIII and TaqI, have been previously characterized in four species of the genus Iberolacerta. These families showed different chromosomal locations, abundances, and evolutionary rates. Here, we extend the study of both satellite DNAs (satDNAs) to the remaining Iberolacerta species, with the aim to investigate the patterns of variability and factors influencing the evolution of these repetitive sequences. Our results revealed disparate patterns but also common traits in the evolutionary histories of these satellite families: (i) each satellite DNA is made up of a library of monomer variants or subfamilies shared by related species; (ii) species-specific profiles of satellite repeats are shaped by expansions and/or contractions of different variants from the library; (iii) different turnover rates, even among closely related species, result in great differences in overall sequence homogeneity and in concerted or non-concerted evolution patterns, which may not reflect the phylogenetic relationships among taxa. Contrasting turnover rates are possibly related to genomic constraints such as karyotype architecture and the interspersed organization of diverging repeat variants in satellite arrays. Moreover, rapid changes in copy number, especially in the centromeric HindIII satDNA, may have been associated with chromosomal rearrangements and even contributed to speciation within Iberolacerta.


DNA, Satellite , Evolution, Molecular , Lizards/genetics , Animals , Chromosome Mapping , Chromosomes , Cluster Analysis , Consensus Sequence , Female , Genes, Mitochondrial , Genetic Association Studies , Genetic Variation , In Situ Hybridization, Fluorescence , Lizards/classification , Male , Phylogeny , Polymorphism, Restriction Fragment Length , Quantitative Trait, Heritable , Sequence Analysis, DNA
14.
PLoS One ; 10(7): e0132380, 2015.
Article En | MEDLINE | ID: mdl-26148117

Parthenogenesis, unisexuality and triploidy are interesting but poorly studied phenomena occurring in some reptile species. The mourning gecko (Lepidodactylus lugubris) represents a complex of diploid and triploid parthenogenetic mostly all-female populations (males occur quite rarely) widely distributed in coastal areas of the Indian and Pacific Oceans. Here, we study karyotypes of a male and two female L. lugubris (LLU) triploid individuals (3n = 66) using comparative painting with Gekko japonicus, Hemidactylus turcicus and H. platyurus chromosome specific probes to visualize the homologous regions and to reveal genus specific rearrangements. Also, we applied a 28S ribosomal DNA probe and Ag-staining to detect nucleolus organizer regions (NORs). Our results suggest that the karyotype of L. lugubris underwent a chromosome fission and a fusion after its divergence from a common ancestor of the Gekko-Hemidactylus group. The NORs were found to be located on one out of three homologs on each of LLU8, LLU15 and LLU18, thus further confirming a hybrid origin of triploid individuals. It seems that three different bisexual populations might have contributed to the origin of this triploid parthenogenetic population. We postulate that the heterozygosity in NOR localization is maintained in the triploid clone studied by the absence of recombination as described in whiptail lizards. The pattern of NOR localizations and homologous regions in males and females, as well as the absence of other detectable karyotypic differences, suggest that males arise spontaneously in all female populations and do not arise from independent hybridizations with different species.


Chimera/genetics , Karyotype , Lizards/genetics , Parthenogenesis , Triploidy , Animals , Female , Humans , Male , Nucleolus Organizer Region/genetics , RNA, Ribosomal, 28S/genetics
15.
J Exp Zool B Mol Dev Evol ; 322(1): 13-26, 2014 Jan.
Article En | MEDLINE | ID: mdl-24014193

Satellite DNAs represent a large portion of all high eukaryotic genomes. They consist of numerous very similar repeated sequences, tandemly arranged in large clusters up to 100 million base pairs in length, usually located in the heterochromatic parts of chromosomes. The biological significance of satDNAs is still under discussion, but most of their proposed functions are related to heterochromatin and/or centromere formation and function. Because information about the structure of reptilian satDNA is far from exhaustive, we present a molecular and cytogenetic characterization of two satDNA families in four lacertid species. Two families of tandemly repeated DNAs, namely TaqI and HindIII satDNAs, have been cloned and sequenced from four species belonging to the genus Iberolacerta. These satDNAs are characterized by a monomer length of 171-188 and 170-172 bp, and by an AT content of 60.5% and 58.1%, respectively. FISH experiments with TaqI satDNA probe produced bright signals in pericentromeric regions of a subset of chromosomes whereas all the centromeres were marked by HindIII probe. The results obtained in this study suggest that chromosome location and abundance of satDNAs influence the evolution of these elements, with centromeric families evolving tenfold faster than interstitial/pericentromeric ones. Such different rates render different satellites useful for phylogenetic investigation at different taxonomic ranks.


DNA, Satellite/genetics , Heterochromatin/genetics , Lizards/genetics , Animals , Base Sequence , Chromosomes/genetics , DNA, Satellite/isolation & purification , Evolution, Molecular , Genome , In Situ Hybridization, Fluorescence , Phylogeny
...