Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Nat Chem ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528102

In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000-1,700 nm) and extended SWIR (ESWIR, 1,700-2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300-1,700 nm and emission onsets of 1,800-2,200 nm. We characterize the fluorophores photophysically (both steady-state and time-resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.

2.
Nat Chem ; 16(5): 800-808, 2024 May.
Article En | MEDLINE | ID: mdl-38316987

Cryo-electron microscopy has delivered a resolution revolution for biological self-assemblies, yet only a handful of structures have been solved for synthetic supramolecular materials. Particularly for chromophore supramolecular aggregates, high-resolution structures are necessary for understanding and modulating the long-range excitonic coupling. Here, we present a 3.3 Å structure of prototypical biomimetic light-harvesting nanotubes derived from an amphiphilic cyanine dye (C8S3-Cl). Helical 3D reconstruction directly visualizes the chromophore packing that controls the excitonic properties. Our structure clearly shows a brick layer arrangement, revising the previously hypothesized herringbone arrangement. Furthermore, we identify a new non-biological supramolecular motif-interlocking sulfonates-that may be responsible for the slip-stacked packing and J-aggregate nature of the light-harvesting nanotubes. This work shows how independently obtained native-state structures complement photophysical measurements and will enable accurate understanding of (excitonic) structure-function properties, informing materials design for light-harvesting chromophore aggregates.

3.
J Phys Chem Lett ; 15(7): 1802-1810, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38329913

Near infrared (NIR, 700-1000 nm) and short-wave infrared (SWIR, 1000-2000 nm) dye molecules exhibit significant nonradiative decay rates from the first singlet excited state to the ground state. While these trends can be empirically explained by a simple energy gap law, detailed mechanisms of nearly universal behavior have remained unsettled for many cases. Theoretical and experimental results for two representative NIR/SWIR dye molecules reported here clarify the key mechanism for the observed energy gap law behavior. It is shown that the first derivative nonadiabatic coupling terms serve as major coupling pathways for nonadiabatic decay processes from the first excited singlet state to the ground state for these NIR and SWIR dye molecules and that vibrational modes other than the highest frequency modes also make significant contributions to the rate. This assessment is corroborated by further theoretical comparison with possible alternative mechanisms of intersystem crossing to triplet states and also by comparison with experimental data for deuterated molecules.

4.
Chem Commun (Camb) ; 60(8): 1000-1003, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38167671

The design of bright short-wave infrared fluorophores remains a grand challenge. Here we investigate the impact of deuteration on the properties in a series of heptamethine dyes, the absorption of which spans near-infrared and SWIR regions. We demonstrate that it is a generally applicable strategy that leads to enhanced quantum yields of fluorescence, longer-lived singlet excited states and suppressed rates of non-radiative deactivation processes.

5.
J Phys Chem Lett ; 15(2): 590-597, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38198595

Polyatomic molecules equipped with optical cycling centers (OCCs), enabling continuous photon scattering during optical excitation, are exciting candidates for advancing quantum information science. However, as these molecules grow in size and complexity, the interplay of complex vibronic couplings on optical cycling becomes a critical but relatively unexplored consideration. Here, we present an extensive exploration of Fermi resonances in large-scale OCC-containing molecules using high-resolution dispersed laser-induced fluorescence and excitation spectroscopy. These resonances manifest as vibrational coupling leading to intensity borrowing by combination bands near optically active harmonic bands, which require additional repumping lasers for effective optical cycling. To mitigate these effects, we explore altering the vibrational energy level spacing through substitutions on the phenyl ring or changes in the OCC itself. While the complete elimination of vibrational coupling in complex molecules remains challenging, our findings highlight significant mitigation possibilities, opening new avenues for optimizing optical cycling in large polyatomic molecules.

6.
J Phys Chem Lett ; 14(42): 9456-9463, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37830914

Large area absorbers with localized defect emission are of interest for energy concentration via the antenna effect. Transfer between 2D and 0D quantum-confined structures is advantageous as it affords maximal lateral area antennas with continuously tunable emission. We report the quantum efficiency of energy transfer in in situ grown HgTe nanoplatelet (NPL)/quantum dot (QD) heterostructures to be near unity (>85%), while energy transfer in separately synthesized and well separated solutions of HgTe NPLs to QDs only reaches 47 ± 11% at considerably higher QD concentrations. Using Kinetic Monte Carlo simulations, we estimate an exciton diffusion constant of 1-10 cm2/s in HgTe NPLs, the same magnitude as that of 2D semiconductors. We also simulate in-solution energy transfer between NPLs and QDs, recovering an R-4 dependence consistent with 2D-0D near-field energy transfer even in randomly distributed NPL/QD mixtures. This highlights the advantage of NPLs 2D morphology and the efficiency of NPL/QD heterostructures and mixtures for energy harvesting.

7.
J Chem Educ ; 100(8): 2860-2872, 2023 Aug 08.
Article En | MEDLINE | ID: mdl-37577453

A parallel series of general chemistry courses for Life Science Majors was created in an effort to support students and improve general chemistry outcomes. We created a two-quarter enhanced general chemistry course series that is not remedial, but instead implements several evidence-based teaching practices including Process Oriented Guided Inquiry Learning (POGIL), Peer-Led Team Learning (PLTL), and the Learning Assistant (LA) model. We found that students who took enhanced general chemistry had higher persistence to the subsequent first organic chemistry course, and performed equally well in the organic course compared to their peers who took standard general chemistry. Students in the first enhanced general chemistry course also reported significantly higher belonging, although we were unable to determine if increased belonging was associated with the increased persistence to organic chemistry. Rather we found that the positive association between taking the enhanced general chemistry course and persistence to organic chemistry was mediated by higher grades received in the enhanced general chemistry course. Our findings highlight the responsibility we have as educators to carefully consider the pedagogical practices we use, in addition to how we assign student grades.

8.
J Chem Phys ; 158(20)2023 May 28.
Article En | MEDLINE | ID: mdl-37218700

Quantitative fluorescence quenching is a common analytical approach to studying the mechanism of chemical reactions. The Stern-Volmer (S-V) equation is the most common expression used to analyze the quenching behavior and can be used to extract kinetics in complex environments. However, the approximations underlying the S-V equation are incompatible with Förster Resonance Energy Transfer (FRET) acting as the primary quenching mechanism. The nonlinear distance dependence of FRET leads to significant departures from "standard" S-V quenching curves, both by modulating the interaction range of donor species and by increasing the effect of component diffusion. We demonstrate this inadequacy by probing the fluorescence quenching of long-lifetime lead sulfide quantum dots mixed with plasmonic covellite copper sulfide nanodisks (NDs), which serve as perfect fluorescent quenchers. By applying kinetic Monte Carlo methods, which consider particle distributions and diffusion, we are able to quantitatively reproduce experimental data, which show significant quenching at very small concentrations of NDs. The distribution of interparticle distances and diffusion are concluded to play important roles in fluorescence quenching, particularly in the shortwave infrared, where photoluminescent lifetimes are often long relative to diffusion time scales.

9.
Nanoscale ; 15(8): 3841-3849, 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36734651

Excitonic chromophore aggregates have wide-ranging applicability in fields such as imaging and energy harvesting; however their rational design requires adapting principles of self-assembly to the requirements of excited state coupling. Using the well-studied amphiphilic cyanine dye C8S3 as a template-known to assemble into tubular excitonic aggregates-we synthesize several redshifted variants and study their self-assembly and photophysics. The new pentamethine dyes retain their tubular self-assembly and demonstrate nearly identical bathochromic shifts and lineshapes well into near-infrared wavelengths. However, detailed photophysical analysis finds that the new aggregates show a significant decline in superradiance. Additionally, cryo-TEM reveals that these aggregates readily form short bundles of nanotubes that have nearly half the radii of their trimethine comparators. We employ computational screening to gain intuition on how the structural components of these new aggregates affect their excitonic states, finding that the narrower tubes are able to assemble into a larger number of arrangements, resulting in more disordered aggregates (i.e. less superradiant) with highly similar degrees of redshift.

10.
J Phys Chem Lett ; 14(2): 552-558, 2023 Jan 19.
Article En | MEDLINE | ID: mdl-36630700

We demonstrate a method for separating and resolving the dynamics of multiple emitters without the use of conventional filters. By directing the photon emission through a fixed path-length imbalanced Mach-Zehnder interferometer, we interferometrically cancel (or enhance) certain spectral signatures corresponding to one emissive species. Our approach, Spectrally selective Time-resolved Emission through Fourier-filtering (STEF), leverages the detection and subtraction of both outputs of a tuned Mach-Zehnder interferometer, which can be combined with time-correlated single photon counting (TCSPC) or confocal imaging to demix multiple emitter signatures. We develop a procedure to calibrate out imperfections in Mach-Zehnder interferometry schemes. Additionally, we demonstrate the range and utility of STEF by performing the following procedures with one measurement: (1) filtering out laser scatter from a sample, (2) separating and measuring a fluorescence lifetime from a binary chromophore mixture with overlapped emission spectra, (3) confocally imaging and separately resolving the standard fluorescent stains in bovine pulmonary endothelial cells and nearly overlapping fluorescent stains on RAW 264.7 cells. This form of spectral balancing can allow for robust and tunable signal sorting.


Endothelial Cells , Interferometry , Animals , Cattle , Interferometry/methods , Lasers , Light , Photons
11.
J Phys Chem Lett ; 13(47): 11029-11035, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36413655

We report the production and spectroscopic characterization of strontium(I) phenoxide (SrOC6H5 or SrOPh) and variants featuring electron-withdrawing groups designed to suppress vibrational excitation during spontaneous emission from the electronically excited state. Optical cycling closure of these species, which is the decoupling of the vibrational state changes from spontaneous optical decay, is found by dispersed laser-induced fluorescence spectroscopy to be high, in accordance with theoretical predictions. A high-resolution, rotationally resolved laser excitation spectrum is recorded for SrOPh, allowing the estimation of spectroscopic constants and identification of candidate optical cycling transitions for future work. The results confirm the promise of strontium phenoxides for laser cooling and quantum state detection at the single-molecule level.


Strontium , Vibration , Spectrometry, Fluorescence , Electrons , Cold Temperature
12.
J Phys Chem Lett ; 13(30): 7029-7035, 2022 Aug 04.
Article En | MEDLINE | ID: mdl-35900113

Rapid and repeated photon cycling has enabled precision metrology and the development of quantum information systems using atoms and simple molecules. Extending optical cycling to structurally complex molecules would provide new capabilities in these areas, as well as in ultracold chemistry. Increased molecular complexity, however, makes realizing closed optical transitions more difficult. Building on already established strong optical cycling of diatomic, linear triatomic, and symmetric top molecules, recent work has pointed the way to cycling of larger molecules, including phenoxides. The paradigm for these systems is an optical cycling center bonded to a molecular ligand. Theory has suggested that cycling may be extended to even larger ligands, like naphthalene, pyrene, and coronene. Herein, we study optical excitation and fluorescent vibrational branching of CaO-[Formula: see text], SrO-[Formula: see text], and CaO-[Formula: see text] and find only weak decay to excited vibrational states, indicating a promising path to full quantum control and laser cooling of large arene-based molecules.

13.
Nat Chem ; 14(9): 995-999, 2022 09.
Article En | MEDLINE | ID: mdl-35879444

Molecular design principles provide guidelines for augmenting a molecule with a smaller group of atoms to realize a desired property or function. We demonstrate that these concepts can be used to create an optical cycling centre, the Ca(I)-O unit, that can be attached to a number of aromatic ligands, enabling the scattering of many photons from the resulting molecules without changing the molecular vibrational state. Such capability plays a central role in quantum state preparation and measurement, as well as laser cooling and trapping, and is therefore a prerequisite for many quantum science and technology applications. We provide further molecular design principles that indicate the ability to optimize and expand this work to an even broader class of molecules. This represents a great step towards a quantum functional group, which may serve as a generic qubit moiety that can be attached to a wide range of molecular structures and surfaces.


Light , Photons , Lasers , Molecular Structure , Organic Chemicals
14.
J Chem Phys ; 157(3): 031104, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35868930

We present a highly efficient method for the extraction of optical properties of very large molecules via the Bethe-Salpeter equation. The crutch of this approach is the calculation of the action of the effective Coulombic interaction, W, through a stochastic time-dependent Hartree propagation, which uses only ten stochastic orbitals rather than propagating the full sea of occupied states. This leads to a scaling that is at most cubic in system size with trivial parallelization of the calculation. We apply this new method to calculate the spectra and electronic density of the dominant excitons of a carbon-nanohoop bound fullerene system with 520 electrons using less than 4000 core hours.

15.
Dalton Trans ; 51(24): 9223-9228, 2022 Jun 21.
Article En | MEDLINE | ID: mdl-35670471

The dynamic photoluminescence properties, and potential quenching mechanisms, of anti-B18H22, 4,4'-Br2-anti-B18H20, and 4,4'-I2-anti-B18H20 are investigated in solution and polymer films. UV stability studies of the neat powders show no decomposition occurring after intense 7 day light soaking. In contrast, clusters incorporated into polymer films are found to degrade into smaller borane fragments under the same irradiation conditions. To highlight the utility of these compounds, we leverage their favorable optical properties in a prototype UV imaging setup.

16.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Article En | MEDLINE | ID: mdl-35318848

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

17.
Nat Catal ; 5(11): 1019-1029, 2022 Nov.
Article En | MEDLINE | ID: mdl-36844635

Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO2/N2-fixing bacterium Xanthobacter autotrophicus with CdTe quantum dots for light-driven CO2 and N2 fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.

18.
Chem ; 7(12): 3359-3376, 2021 Dec 09.
Article En | MEDLINE | ID: mdl-34901520

Rational design of bright near and shortwave infrared (NIR: 700-1000 SWIR: 1000- 2000 nm) emitters remains an open question with applications spanning imaging and photonics. Combining experiment and theory, we derive an energy gap quantum yield master equation (EQME), describing the fundamental limits in SWIR quantum yields (ϕ F ) for organic chromophores. Evaluating the photophysics of 21 polymethine NIR/SWIR chromophores to parameterize the EQME, we explain the precipitous decline of ϕ F past 900 nm through decreasing radiative rates and increasing nonradiative losses via high frequency vibrations relating to the energy gap. Using the EQME we develop an energy gap independent ϕ F NIR/SWIR chromophore comparison metric. We show electron donating character on polymethine heterocycles results in relative increases in radiative efficiency obscured by a simultaneous redshift. Finally, the EQME yields rational chromophore design insights shown by how deuteration (backed by our experimental results) or molecular aggregation increases SWIR ϕ F .

19.
Nature ; 599(7885): 404-410, 2021 11.
Article En | MEDLINE | ID: mdl-34789906

Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.

20.
J Am Chem Soc ; 143(18): 6836-6846, 2021 05 12.
Article En | MEDLINE | ID: mdl-33939921

Optical imaging within the shortwave infrared (SWIR, 1000-2000 nm) region of the electromagnetic spectrum has enabled high-resolution and high-contrast imaging in mice, non-invasively. Polymethine dyes, with their narrow absorption spectra and high absorption coefficients, are optimal probes for fast and multiplexed SWIR imaging. Here, we expand upon the multiplexing capabilities in SWIR imaging by obtaining brighter polymethine dyes with varied excitation wavelengths spaced throughout the near-infrared (700-1000 nm) region. Building on the flavylium polymethine dye scaffold, we explored derivatives with functional group substitution at the 2-position, deemed chromenylium polymethine dyes. The reported dyes have reduced nonradiative rates and enhanced emissive properties, enabling non-invasive imaging in mice in a single color at 300 fps and in three colors at 100 fps. Combined with polymethine dyes containing a red-shifted julolidine flavylium heterocycle and indocyanine green, distinct channels with well-separated excitation wavelengths provide non-invasive video-rate in vivo imaging in four colors.


Color , Fluorescent Dyes/chemistry , Indoles/chemistry , Optical Imaging , Animals , Fluorescent Dyes/chemical synthesis , Indoles/chemical synthesis , Infrared Rays , Mice , Molecular Structure
...