Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
ACS Appl Mater Interfaces ; 16(21): 27209-27223, 2024 May 29.
Article En | MEDLINE | ID: mdl-38747220

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br- oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO's intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO-PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

2.
Nanomaterials (Basel) ; 14(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38786816

Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. We report here a new photoactive system, operating under visible light, capable of degrading EE2, OZ and DRO in water. The photocatalytic system comprised glass spheres coated with nanostructured, solvothermally treated WO3 that improves the ease of handling of the photocatalyst and allows for the implementation of a continuous flow process. The photocatalytic system based on solvothermal WO3 shows much better results in terms of photocurrent generation and photocatalyst stability with respect to state-of-the-art WO3 nanoparticles. Results herein obtained demonstrate that the proposed flow system is a promising prototype for enhanced contaminant degradation exploiting advanced oxidation processes.

3.
Langmuir ; 40(19): 10115-10128, 2024 May 14.
Article En | MEDLINE | ID: mdl-38703121

This study investigates the utilization of the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a catalytic material for the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). PEDOT films doped with different counterions were electrodeposited on graphite foil. In particular, the mobile anion perchlorate and the polymeric ionomers polystyrenesulfonate, Nafion, and Aquivion were used. The electrocatalytic properties of PEDOT films were evaluated toward the TEMPO redox mediator in the absence and the presence of HMF as a substrate for oxidation reactions. The electrocatalytic HMF oxidation was confirmed to occur at PEDOT electrodes, and it was also found that the chemical nature of PEDOT counterions controls the electrocatalytic conversion of HMF by modulating the kinetics of the electrochemical generation of the oxoammonium cation TEMPO(+). Potentiostatic electrolysis experiments showed that both the reference graphite electrode and PEDOT substrates were able to convert HMF to FDCA with an 80% faradaic efficiency (FE) and a >90% yield (FDCA), but, compared to graphite, the complete conversion of HMF to FDCA required a ca. 30% shorter time when using PEDOT electrodes doped with perchlorate or Aquivion, thanks to their ability to sustain a higher current density in the initial phase of the electrolysis. In addition, while all PEDOT films were chemically stable under the electrochemical conditions herein described, only PEDOT films doped with Aquivion were also mechanically robust and stable against delamination. Thus, the new PEDOT/Aquivion composite may represent the best choice for the implementation of PEDOT-based electrodes in TEMPO-mediated electrocatalytic applications.

4.
J Synchrotron Radiat ; 31(Pt 3): 464-468, 2024 May 01.
Article En | MEDLINE | ID: mdl-38619290

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.

5.
Article En | MEDLINE | ID: mdl-38652052

Supercapacitors offer notable properties as energy storage devices, providing high power density and fast charging and discharging while maintaining a long cycling lifetime. Although poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) has become a gold standard among organic electronics materials, researchers are still investigating ways to further improve its capacitive characteristics. In this work, we introduced Nafion as an alternative polymeric counterion to PSS to form highly capacitive PEDOT/Nafion; its advantageous supercapacitive properties were further improved by treatment with either dimethyl sulfoxide or ethylene glycol. Accordingly, electrochemical characterization of PEDOT/Nafion films revealed their high areal capacitance (22 mF cm-2 at 10 mV/s) and low charge transfer resistance (∼380 Ω), together with excellent volumetric capacitance (74 F cm-3), Coulombic efficiency (99%), and an energy density of 23.1 ± 1.5 mWh cm-3 at a power density of 0.5 W cm-3, resulting from a more effective ion diffusion inside the conductive film, as confirmed by the results of spectroscopic studies. A proof-of-concept symmetric supercapacitor based on PEDOT/Nafion was characterized with a specific capacitance of approximately 15.7 F g-1 and impressive long-term stability (Coulombic efficiency ∼99% and capacitance ∼98.7% after 1000 charging/discharging cycles), overperforming the device based on PEDOT/PSS.

6.
Chemistry ; 30(26): e202400393, 2024 May 08.
Article En | MEDLINE | ID: mdl-38443315

A new family of ionic Ir(III) cyclometalated complexes with general formula [Ir(CN)2(NN)][Br], was designed and prepared to be assessed as photocalysts for the visible light assisted ATRP polymerization of MMA. To this purpose, our design strategy involved both: i) the decoration of the cyclometalating (CN) and the ancillary (NN) ligands with various electron withdrawing and/or electron donor substituents and, ii) the use of Br- as the counter anion for these cationic Ir(III) species. After an extensive screening in which the [Ir(CN)2(NN)][Br]-type compounds were compared to the model neutral complex fac-[Ir(ppy)3], the "fully" amino-substituted ion pairs abbreviated as [10][Br] and [11][Br], exhibited the best photocatalytic performances under irradiation with CFL lamps. It is worth noting that the outcomes of transient absorption spectroscopy (TAS) experiments combined with theoretical DFT calculations, enlightened the role played by the Ir(III) complexes in the mechanism of the photoATRP process, and suggested the rationalization of the different performances that were highlighted by our Ir(III) catalyst in the visible light assisted photopolymerization of MMA.

7.
ACS Appl Mater Interfaces ; 16(12): 14864-14882, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38483816

This research introduces a novel series of perfluorinated Zn(II) porphyrins with positive oxidation potentials designed as sensitizers for photoelectrosynthetic cells, with a focus on promoting the oxidation of benzyl alcohol (BzOH) mediated by the 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) organocatalyst. Three dyes, CLICK-3, CLICK-4, and BETA-4, are meticulously designed to explore the impact of substituents and their positions on the perfluorinated porphyrin ring in terms of redox potentials and energy level alignment when coupled with SnO2/TiO2-based photoanodes and TEMPO mediator. A comprehensive analysis utilizing spectroscopy, electrochemistry, photophysics, and computational techniques of the dyes in solution and sensitized thin films unveils an enhanced charge-separation character in the 4D-π-1A type BETA-4. Incorporating four dimethylamino donor groups at the periphery of the porphyrin ring and a BTD-accepting linker at the ß-pyrrolic position equips the structure with a more efficient donor-acceptor system. This enhancement ensures improved light-harvesting capacity, resulting in a doubled incident photon-to-current conversion efficiency (IPCE% ≃30%) in the presence of LiI compared to meso-substituted dyes CLICK-3 and CLICK-4. Sensitizing SnO2/TiO2 thin films with BETA-4 successfully promotes the photooxidation of benzyl alcohol (BzOH) in the presence of the rapid TEMPO radical catalyst, yielding photocurrents of approximately 125 µA/cm2 in an optimized TBPy/LiClO4/ACN electrolyte. Notably, when lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) replaces TBPy as the base for TEMPO-catalyzed BzOH oxidation, a remarkable photocurrent of around 800 µA/cm2 is achieved, marking one of the highest values reported for this photoelectrochemical reaction to date. This study underscores that the proper functionalization of perfluorinated zinc porphyrins positions these dyes as ideal candidates for sensitizing SnO2/TiO2 in the photodriven oxidation of BzOH. It also highlights the crucial role of carefully tuning electrolyte composition based on the electronic properties of molecular sensitizers.

8.
Acc Chem Res ; 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38302460

ConspectusThe harvesting and conversion of solar energy have become a burning issue for our modern societies seeking to move away from the exploitation of fossil fuels. In this context, dye-sensitized solar cells (DSSCs) have proven to be trustworthy alternatives to silicon-based cells with advantages in terms of transparency and efficiency under low illumination conditions. These devices are highly dependent on the ability of the sensitizer that they contain to collect sunlight and transfer an electron to a semiconductor after excitation. Ruthenium and polypyridine complexes are benchmarks in this field as they exhibit ideal characteristics such as long-lasting metal-ligand charge transfer (MLCT) states and efficient separation between electrons and holes, limiting recombination at the dye-semiconductor interface. Despite all of these advantages, ruthenium is a noble metal, and the development of more sustainable energy devices based on earth-abundant metals is now a must. A quick glance at the periodic table reveals iron as a potential good candidate, since it belongs to the same group of ruthenium, which suggests similar electronic properties. However, striking photophysical differences exist between ruthenium(II) polypyridyl complexes and their Fe(II) analogues, the latter suffering from short-lived MLCT states resulting of their ultrafast relaxation into metal-centered (MC) states. Pyridyl-N-heterocyclic carbenes (pyridylNHC) brought a strong σ-donor character required to promote a higher ligand field splitting of the iron d orbitals. This induces destabilization of the MC states over the MLCT manifold and a consequent slowdown of the excited states deactivation providing iron(II) complexes with tens of picoseconds lifetimes, making them more promising for applications in DSSCs. This Account highlights our recent advances in the development and characterization of iron-sensitized solar cells (FeSSCs) with a focus on the design of efficient sensitizers going from homoleptic to heteroleptic complexes (bearing different anchoring groups) and the tuning of electrolyte composition. Our rational approach led to the best photocurrent and efficiency ever reported for an iron sensitized solar cell (2% PCE and 9 mA/cm2) using a cosensitization process. This work clearly evidences that the solar energy conversion based on iron complex sensitization is now an opened and fruitful route.

9.
Molecules ; 29(2)2024 Jan 05.
Article En | MEDLINE | ID: mdl-38257206

Since Mallouk's earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water have made its splitting an extensively studied reaction; here, we present some examples from the outset to recent advancements. Additionally, alternative oxidative pathways like HX splitting and organic reactions mediated by a redox shuttle are discussed.

10.
Chemistry ; 29(62): e202301603, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37584222

The phosphine ligand (Ph2 PCH2 N(CH3 )(CH2 )2 Ph, PNMPEA) obtained by the reaction of the (hydroxymethyl)diphenylphosphine with naturally occurring alkaloid N-methylphenethylamine, was used to synthesize the half-sandwich iridium(III) (Ir(η5 -Cp*)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, IrPNMPEA) and ruthenium(II) (Ru(η6 -p-cymene)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, RuPNMPEA) complexes. They were characterized using a vast array of methods, including 1D and 2D NMR, ESI(+)MS spectrometry, elemental analysis, cyclic voltammetry (CV), electron spectroscopy in the UV-Vis range (absorption, fluorescence) and density functional theory (DFT). The initial antimicrobial activity in vitro toward Gram-positive and Gram-negative bacterial strains was examined, indicating that both complexes are selective towards Gram-positive bacteria, e. g., Staphylococcus aureus, where the IrPNMPEA has been more bactericidal compared to RuPNMPEA. Additionally, the interactions of these compounds with various biomolecules, such as DNA (ctDNA, plasmid DNA, 9-ethylguanine (9-EtG), and 9-methyladenine (9-MeA)), nicotinamide adenine dinucleotide (NADH), glutathione (GSH), and ascorbic acid (Asc) were described. The results showed that both Ir(III) and Ru(II) complexes accelerate the oxidation process of NADH, GSH and Asc that appeared to occur by an electron transfer mechanism. Interestingly, only IrPNMPEA leads to the formation of various biomolecule adducts, which can explain its higher activity. Furthermore, RuPNMPEA and IrPNMPEA have been interacting with the DNA through weak noncovalent interactions.


Alkaloids , Antineoplastic Agents , Coordination Complexes , Ruthenium , Humans , Coordination Complexes/chemistry , NAD , Cell Line, Tumor , DNA , Ruthenium/chemistry , Antineoplastic Agents/chemistry
11.
Chem Sci ; 14(16): 4288-4301, 2023 Apr 26.
Article En | MEDLINE | ID: mdl-37123187

Fe(ii) pyridyl-NHC sensitizers bearing thienylcyanoacrylic (ThCA) anchoring groups have been designed and characterized with the aim of enhancing the metal to surface charge separation and the light harvesting window in iron-sensitized DSSCs (FeSSCs). In these new Fe(ii) dyes, the introduction of the ThCA moiety remarkably extended the spectral response and the photocurrent, in comparison with their carboxylic analogues. The co-sensitization based on a mixture of a carboxylic and a ThCA-iron complex produced a panchromatic absorption, up to 800 nm and the best photocurrent and efficiency (J sc: 9 mA cm-2 and PCE: 2%) ever reported for an FeSSC.

12.
J Phys Chem C Nanomater Interfaces ; 127(17): 7957-7964, 2023 May 04.
Article En | MEDLINE | ID: mdl-37181327

Intensity-modulated photocurrent spectroscopy (IMPS) has been largely employed in semiconductor characterization for solar energy conversion devices to probe the operando behavior with widely available facilities. However, the implementation of IMPS data analysis to complex structures, whether based on the physical rate constant model (RCM) or the assumption-free distribution of relaxation times (DRT), is generally limited to a semi-quantitative description of the charge carrier kinetics of the system. In this study, a new algorithm for the analysis of IMPS data is developed, providing unprecedented time resolution to the investigation of µs to s charge carrier dynamics in semiconductor-based systems used in photoelectrochemistry and photovoltaics. The algorithm, based on the previously developed DRT analysis, is herein modified with a Lasso regression method and available to the reader free of charge. A validation of this new algorithm is performed on a α-Fe2O3 photoanode for photoelectrochemical water splitting, identified as a standard platform in the field, highlighting multiple potential-dependent charge transfer paths, otherwise hidden in the conventional IMPS data analysis.

13.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36770375

A good photocatalyst maximizes the absorption of excitation light while reducing the recombination of photogenerated carriers. Among visible light responsive materials, CdS has good carrier transport capacity; however, its photostability is poor and limits its use. Here, the synthesis of a new hydrothermal CdS is reported, and post-synthesis annealing determines crystal properties and spectroscopic characteristics. The introduction of sulfur vacancies as intra band gap states is the key factor for the enhancement of photocatalytic activity. In fact, by spectroscopic and photo-electrochemical experiments, we demonstrate that sulfur vacancies act as an electron sink, favoring the charge transfer process to methyl orange. In addition, the studied hydrothermal CdS is characterized by very high stability, thus enabling a visible-light active photocatalyst that is overall recyclable, stable and more efficient than the commercial benchmark.

14.
ChemSusChem ; 16(5): e202201980, 2023 Mar 08.
Article En | MEDLINE | ID: mdl-36507568

Dye-sensitized photoanodes for C-H activation in organic substrates are assembled by vacuum sublimation of a commercially available quinacridone (QNC) dye in the form of nanosized rods onto fluorine-doped tin oxide (FTO), TiO2 , and SnO2 slides. The photoanodes display extended absorption in the visible range (450-600 nm) and ultrafast photoinduced electron injection (<1 ps, as revealed by transient absorption spectroscopy) of the QNC dye into the semiconductor. The proton-coupled electron-transfer reactivity of QNC is exploited for generating a nitrogen-based radical as its oxidized form, which is competent in C-H bond activation. The key reactivity parameter is the bond-dissociation free energy (BDFE) associated with the N⋅/N-H couple in QNC of 80.5±2.3 kcal mol-1 , which enables hydrogen atom abstraction from allylic or benzylic C-H moieties. A photoelectrochemical response is indeed observed for organic substrates characterized by C-H bonds with BDFE below the 80.5 kcal mol-1 threshold, such as γ-terpinene, xanthene, or dihydroanthracene. This work provides a rational, mechanistically oriented route to the design of dye-sensitized photoelectrodes for selective organic transformations.

15.
Inorg Chem ; 61(48): 19261-19273, 2022 Dec 05.
Article En | MEDLINE | ID: mdl-36383699

Novel heteronuclear IrIII-CuII coordination compounds ([Ir(η5-Cp*)Cl2Pcfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (1), [Ir(η5-Cp*)Cl2Pnfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (2), [Ir(η5-Cp*)Cl2Plfx-Cu(phen)](NO3)·1.3(H2O)·1.95(CH3OH) (3), [Ir(η5-Cp*)Cl2Psfx-Cu(phen)] (4)) bearing phosphines derived from fluoroquinolones, namely, sparfloxacin (Hsfx), ciprofloxacin (Hcfx), lomefloxacin (Hlfx), and norfloxacin (Hnfx), have been synthesized and studied as possible anticancer chemotherapeutics. All compounds have been characterized by electrospray ionization mass spectrometry (ESI-MS), a number of spectroscopic methods (i.e., IR, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, variable-temperature magnetic susceptibility measurements, and X-ray diffractometry. The coordination geometry of IrIII in all complexes adopts a characteristic piano-stool geometry with the η5-coordinated and three additional sites occupied by two chloride and phosphine ligands, while CuII ions in complexes 1 and 2 form a distorted square-pyramidal coordination geometry, and in complex 3, the coordination geometry around CuII ions is a distorted octahedron. Interestingly, the crystal structure of [Ir(η5-Cp*)Cl2Plfx-Cu(phen)] features the one-dimensional (1D) metal-organic polymer. Liposomes loaded with redox-active and fluorescent [Ir(η5-Cp*)Cl2Pcfx-Cu(phen)] (1L) have been prepared to increase water solubility and minimize serious systemic side effects. It has been proven, by confocal microscopy and an inductively coupled plasma mass spectrometry (ICP-MS) analysis, that the liposomal form of compound 1 can be effectively accumulated inside human lung adenocarcinoma and human prostate carcinoma cells with selective localization in nuclei. A cytometric analysis showed dominance of apoptosis over the other cell death types. Furthermore, the investigated nanoformulations induced changes in the cell cycle, leading to S phase arrest in a dose-dependent manner. Importantly, in vitro anticancer action on three-dimensional (3D) multicellular tumor spheroids has been demonstrated.


Carcinoma , Coordination Complexes , Humans , Male , Copper/chemistry , Liposomes , Prostate , Ions , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray
16.
ACS Omega ; 7(33): 29181-29194, 2022 Aug 23.
Article En | MEDLINE | ID: mdl-36033653

PEDOT-based counter electrodes for dye-sensitized solar cells (DSSCs) are generally prepared by electrodeposition, which produces polymer films endowed with the best electrocatalytic properties. This translates in fast regeneration of the redox mediator, which allows the solar cell to sustain efficient photoconversion. The sustainable fabrication of DSSCs must consider the scaling up of the entire process, and when possible, it should avoid the use of large amounts of hazardous and/or inflammable chemicals, such as organic solvents for instance. This is why electrodeposition of PEDOT-based counter electrodes should preferably be carried out in aqueous media. In this study, PEDOT/Nafion was electrodeposited on FTO and comparatively evaluated as a catalytic material in DSSCs based on either cobalt or copper electrolytes. Our results show that the electrochemical response of PEDOT/Nafion toward Co(II/III-) or Cu(I/II)-based redox shuttles was comparable to that of PEDOT/ClO4 and significantly superior to that of PEDOT/PSS. In addition, when tested for adhesion, PEDOT/Nafion films were more stable for delamination if compared to PEDOT/ClO4, a feature that may prove beneficial in view of the long-term stability of solar devices.

17.
Molecules ; 27(13)2022 Jun 29.
Article En | MEDLINE | ID: mdl-35807425

A gold nanoparticles transparent electrode was realized by chemical reduction. This work aims to compare the transparent gold nanoparticles electrode with a more commonly utilized gold-film-coated electrode in order to investigate its potential use as counter-electrode (CE) in dye-sensitized solar cells (DSSCs). A series of DSSC devices, utilizing I-/I3- and Co(III)/(II) polypyridine redox mediators [Co(dtb)3]3+/2+; dtb = 4,4'ditert-butyl-2,2'-bipyridine)], were evaluated. The investigation focused firstly on the structural characterization of the deposited gold layers and then on the electrochemical study. The novelty of the work is the realization of a gold nanoparticles CE that reached 80% of average visible transmittance. We finally examined the performance of the transparent gold nanoparticles CE in DSSC devices. A maximum power conversion efficiency (PCE) of 4.56% was obtained with a commercial I-/I3--based electrolyte, while a maximum 3.1% of PCE was obtained with the homemade Co-based electrolyte.

18.
Dalton Trans ; 51(28): 10787-10798, 2022 Jul 19.
Article En | MEDLINE | ID: mdl-35726732

Electroreduction of carbon dioxide represents an appealing strategy to rethink a waste product as a valuable feedstock for the formation of value-added compounds. Among the metal electrodes able to catalyze such processes, copper plays a central role due to its rich chemistry. Strategies aimed at tuning Cu selectivity comprise nanostructuring and alloying/post-functionalization with heterometals. In this contribution, we report on straightforward electrochemical methods for the formation of nanostructured Cu-In interfaces. The latter were fully characterized and then used as cathodes for CO2 electroreduction in aqueous environment, leading to the selective production of syngas, whose composition varies upon changing the applied bias and indium content. In particular, gaseous mixtures compatible with the synthesis of methanol or aldehydes (i.e. respectively with 1 : 2 and 1 : 1 CO/H2 ratios) are produced at low (i.e. -0.62 V vs. RHE) applied bias with >3.5 mA cm-2 current densities (in absolute value). Even if the proposed cathodes undergo structural modifications upon prolonged exposure to CO2 reduction conditions, their catalytic activity can be restored by introducing an additional In(III) precursor to the electrolytic solution.

19.
J Org Chem ; 87(12): 7826-7837, 2022 06 17.
Article En | MEDLINE | ID: mdl-35621232

Indole-decorated glycine derivatives are prepared through an environmentally benign cross-dehydrogenative coupling between N-aryl glycine analogues and indoles (yield of ≤81%). Merging heterogeneous organocatalysis and photocatalysis, C-H functionalization has been achieved by selective C-2 oxidation of N-aryl glycines to afford the electrophilic imine followed by Friedel-Crafts alkylation with indole. The sustainability of the process has been taken into account in the reaction design through the implementation of a metal-free recyclable heterogeneous photocatalyst and a green reaction medium. Scale-up of the benchmark reaction (gram scale, yield of 69%) and recycling experiments (over seven runs without a loss of efficiency) have been performed to prove the robustness of the protocol. Finally, mechanistic studies were conducted employing electron paramagnetic resonance spectroscopy to unveil the roles of the photocatalyst and oxygen in the formation of odd-electron species.


Glycine , Indoles , Amino Acids , Catalysis , Glycine/chemistry , Graphite , Indoles/chemistry , Nitrogen Compounds
20.
Molecules ; 27(9)2022 May 04.
Article En | MEDLINE | ID: mdl-35566275

New composite photocatalysts have been obtained by chemical bath deposition of CdS on top of either nanostructured crystalline ZrO2 or TiO2 films previously deposited on conductive glass FTO. Their morphological, photoelectrochemical and photochemical properties have been investigated and compared. Time resolved spectroscopic, techniques show that in FTO/TiO2/CdS films the radiative recombination of charges, separated by visible illumination of CdS, is faster than in FTO/ZrO2/CdS, evidencing that carrier dynamics in the two systems is different. Photoelectrochemical investigation evidence a suppression of electron collection in ZrO2/CdS network, whereas electron injection from CdS to TiO2 is very efficient since trap states of TiO2 act as a reservoir for long lived electrons storage. This ability of FTO/TiO2/CdS films is used in the reductive cleavage of N=N bonds of some azo-dyes by visible light irradiation, with formation and accumulation of reduced aminic intermediates, identified by ESI-MS analysis. Needed protons are provided by sodium formate, a good hole scavenger that leaves no residue upon oxidation. FTO/TiO2/CdS has an approximately 100 meV driving force larger than FTO/ZrO2/CdS under illumination for azo-dye reduction and it is always about 10% more active than the seconds. The films showed very high stability and recyclability, ease of handling and recovering.


Azo Compounds , Titanium , Catalysis , Coloring Agents , Light , Titanium/chemistry
...