Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Ital J Pediatr ; 50(1): 71, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627855

BACKGROUND: Congenital cytomegalovirus (cCMV) infection, resulting from non-primary maternal infection or reactivation during pregnancy, can cause serious fetal abnormalities, complications in the immediate neonatal period, and severe sequelae later in childhood. Maternal non-primary cytomegalovirus infection in pregnancy is transmitted to the fetus in 0.5-2% of cases (1). CASE PRESENTATION: An African full term male newbornwas delivered by emergency caesarean section. Due to signs of asphyxia at birth and clinical moderate encephalopathy, he underwent therapeutic hypothermia. Continuous full video-electroencephalography monitoring showed no seizures during the first 72 h, however, soon after rewarming, he presented refractory status epilepticus due to an intracranial hemorrhage, related to severe thrombocytopenia. The patient also presented signs of sepsis (hypotension and signs of reduced perfusions). An echocardiography revealed severe cardiac failure with an ejection fraction of 33% and signs suggestive of cardiomyopathy. Research for CMV DNA Polymerase Chain Reaction (PCR) on urine, blood, cerebrospinal fluid, and nasopharyngeal secretions was positive.The mother had positive CMV IgG with negative IgM shortly before pregnancy. Serology for CMV was therefore not repeated during pregnancy, but CMV DNA performed on the Guthrie bloodspot taken at birth yielded a positive result, confirming the intrauterine transmission and congenital origin of the infection. The baby was discharged in good general condition and follow up showed a normal neurodevelopmental outcome at 9 months. CONCLUSION: Although uncommon, congenital cytomegalovirus infection should be included in the differential diagnosis of intraventricular hemorrhage and cardiomyopathy. Furthermore, this case highlights the possible severity of congenital cytomegalovirus infection, even in cases of previous maternal immunity.


Cardiomyopathies , Cytomegalovirus Infections , Pregnancy Complications, Infectious , Infant, Newborn , Pregnancy , Male , Humans , Female , Cytomegalovirus , Pregnancy Complications, Infectious/diagnosis , Cerebral Intraventricular Hemorrhage , Cesarean Section , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/drug therapy , DNA, Viral/analysis , Mothers
2.
Eur J Paediatr Neurol ; 46: 89-97, 2023 Sep.
Article En | MEDLINE | ID: mdl-37544258

THE CHALLENGE OF SEIZURE RECOGNITION: Recognition of seizures in neonates remains the foremost challenge to overcome. All neonates at risk for seizures, especially the critically ill, should undergo video-EEG monitoring. The initial step toward an accurate diagnosis is the accurate description and interpretation of the electro-clinical phenotype. THE IMPORTANCE OF SEIZURE SEMIOLOGY AND ASSOCIATION WITH ETIOLOGY: The early distinction between acute provoked seizures and neonatal-onset epilepsies serves as the primary determinant for guiding management, treatment choices, and duration. Seizures in neonates should be seen as a symptom, not a disease, and their semiology may suggest the etiology. TREATMENT OF ACUTE PROVOKED SEIZURES: Neonates with hypoxic-ischemic encephalopathy respond best to phenobarbital, while levetiracetam is a better choice for neonates with congenital heart diseases. Anti-seizure medication can be discontinued after 72 h of seizure freedom, before discharge from the hospital. TREATMENT OF NEONATAL EPILEPSIES: Neonates with epilepsy usually require a personalized, etiology-based approach in terms of choice and duration of treatment. Neonates with channelopathies tend to respond to sodium channel blockers such as carbamazepine, oxcarbazepine, or phenytoin. The surgical option should be considered early in cases of large brain malformations, such as hemimegalencephaly.

3.
Seizure ; 110: 212-219, 2023 Aug.
Article En | MEDLINE | ID: mdl-37429183

PURPOSE: Early recognition of seizures in neonates secondary to pathogenic variants in potassium or sodium channel coding genes is crucial, as these seizures are often resistant to commonly used anti-seizure medications but respond well to sodium channel blockers. Recently, a characteristic ictal amplitude-integrated electroencephalogram (aEEG) pattern was described in neonates with KCNQ2-related epilepsy. We report a similar aEEG pattern in seizures caused by SCN2A- and KCNQ3-pathogenic variants, as well as conventional EEG (cEEG) descriptions. METHODS: International multicentre descriptive study, reporting clinical characteristics, aEEG and cEEG findings of 13 neonates with seizures due to pathogenic SCN2A- and KCNQ3-variants. As a comparison group, aEEGs and cEEGs of neonates with seizures due to hypoxic-ischemic encephalopathy (n = 117) and other confirmed genetic causes affecting channel function (n = 55) were reviewed. RESULTS: In 12 out of 13 patients, the aEEG showed a characteristic sequence of brief onset with a decrease, followed by a quick rise, and then postictal amplitude attenuation. This pattern correlated with bilateral EEG onset attenuation, followed by rhythmic discharges ending in several seconds of post-ictal amplitude suppression. Apart from patients with KCNQ2-related epilepsy, none of the patients in the comparison groups had a similar aEEG or cEEG pattern. DISCUSSION: Seizures in SCN2A- and KCNQ3-related epilepsy in neonates can usually be recognized by a characteristic ictal aEEG pattern, previously reported only in KCNQ2-related epilepsy, extending this unique feature to other channelopathies. Awareness of this pattern facilitates the prompt initiation of precision treatment with sodium channel blockers even before genetic results are available.


Electroencephalography , Epilepsy , Infant, Newborn , Humans , Electroencephalography/methods , Sodium Channel Blockers , KCNQ2 Potassium Channel/genetics , Cognition , NAV1.2 Voltage-Gated Sodium Channel/genetics
4.
Epilepsy Behav ; 143: 109229, 2023 06.
Article En | MEDLINE | ID: mdl-37148703

OBJECTIVE: During the presurgical evaluation, manual electrical source imaging (ESI) provides clinically useful information in one-third of the patients but it is time-consuming and requires specific expertise. This prospective study aims to assess the clinical added value of a fully automated ESI analysis in a cohort of patients with MRI-negative epilepsy and describe its diagnostic performance, by evaluating sublobar concordance with stereo-electroencephalography (SEEG) results and surgical resection and outcome. METHODS: All consecutive patients referred to the Center for Refractory Epilepsy (CRE) of St-Luc University Hospital (Brussels, Belgium) for presurgical evaluation between 15/01/2019 and 31/12/2020 meeting the inclusion criteria, were recruited to the study. Interictal ESI was realized on low-density long-term EEG monitoring (LD-ESI) and, whenever available, high-density EEG (HD-ESI), using a fully automated analysis (Epilog PreOp, Epilog NV, Ghent, Belgium). The multidisciplinary team (MDT) was asked to formulate hypotheses about the epileptogenic zone (EZ) location at sublobar level and make a decision on further management for each patient at two distinct moments: i) blinded to ESI and ii) after the presentation and clinical interpretation of ESI. Results leading to a change in clinical management were considered contributive. Patients were followed up to assess whether these changes lead to concordant results on stereo-EEG (SEEG) or successful epilepsy surgery. RESULTS: Data from all included 29 patients were analyzed. ESI led to a change in the management plan in 12/29 patients (41%). In 9/12 (75%), modifications were related to a change in the plan of the invasive recording. In 8/9 patients, invasive recording was performed. In 6/8 (75%), the intracranial EEG recording confirmed the localization of the ESI at a sublobar level. So far, 5/12 patients, for whom the management plan was changed after ESI, were operated on and have at least one-year postoperative follow-up. In all cases, the EZ identified by ESI was included in the resection zone. Among these patients, 4/5 (80%) are seizure-free (ILAE 1) and one patient experienced a seizure reduction of more than 50% (ILAE 4). CONCLUSIONS: In this single-center prospective study, we demonstrated the added value of automated ESI in the presurgical evaluation of MRI-negative cases, especially in helping to plan the implantation of depth electrodes for SEEG, provided that ESI results are integrated into the whole multimodal evaluation and clinically interpreted.


Drug Resistant Epilepsy , Epilepsy , Humans , Prospective Studies , Epilepsy/diagnostic imaging , Epilepsy/surgery , Magnetic Resonance Imaging/methods , Electroencephalography/methods , Electrocorticography , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery
5.
Clin Neurophysiol ; 147: 99-107, 2023 03.
Article En | MEDLINE | ID: mdl-36764043

OBJECTIVE: The objective of the study was to record Laryngeal Motor Evoked Potentials (LMEPs) in Vagus Nerve Stimulation (VNS)-implanted patients suffering from Drug-Resistant Epilepsy (DRE). Based on these recordings, LMEPs characteristics were evaluated and compared between responders (R) and non-responders (NR). Finally, possible under- or over-stimulation was assessed based on a physiological indicator of fiber engagement. METHODS: Mean dose-response curves were compared between R and NR. A Support Vector Machine (SVM) model was built based on both LMEP and dose-response curves features, to discriminate R from NR. For the exploration of possible under- or over-stimulation, a ratio between the clinically applied stimulation intensity and the intensity yielding to LMEP saturation was computed for each patient. RESULTS: A trend towards a greater excitability of the nerve was observed in R compared to NR. The SVM classifier discriminated R and NR with an accuracy of 80%. An ineffective attempt to overstimulate at current levels above what is usually necessary to obtain clinical benefits was suggested in NR. CONCLUSIONS: The SVM model built emphasizes a possible link between vagus nerve recruitment characteristics and treatment effectiveness. Most of the clinically responding patients receive VNS at a stimulation intensity 1-fold and 2-fold the intensity inducing LMEP saturation. SIGNIFICANCE: LMEP saturation could be a practical help in guiding the titration of the stimulation parameters using a physiological indicator of fiber engagement.


Drug Resistant Epilepsy , Larynx , Vagus Nerve Stimulation , Humans , Evoked Potentials, Motor , Vagus Nerve/physiology , Drug Resistant Epilepsy/etiology , Treatment Outcome
6.
Neurology ; 100(12): e1234-e1247, 2023 03 21.
Article En | MEDLINE | ID: mdl-36599696

BACKGROUND AND OBJECTIVES: BRAT1 encephalopathy is an ultra-rare autosomal recessive neonatal encephalopathy. We delineate the neonatal electroclinical phenotype at presentation and provide insights for early diagnosis. METHODS: Through a multinational collaborative, we studied a cohort of neonates with encephalopathy associated with biallelic pathogenic variants in BRAT1 for whom detailed clinical, neurophysiologic, and neuroimaging information was available from the onset of symptoms. Neuropathologic changes were also analyzed. RESULTS: We included 19 neonates. Most neonates were born at term (16/19) from nonconsanguineous parents. 15/19 (79%) were admitted soon after birth to a neonatal intensive care unit, exhibiting multifocal myoclonus, both spontaneous and exacerbated by stimulation. 7/19 (37%) had arthrogryposis at birth, and all except 1 progressively developed hypertonia in the first week of life. Multifocal myoclonus, which was present in all but 1 infant, was the most prominent manifestation and did not show any EEG correlate in 16/19 (84%). Video-EEG at onset was unremarkable in 14/19 (74%) infants, and 6 (33%) had initially been misdiagnosed with hyperekplexia. Multifocal seizures were observed at a median age of 14 days (range: 1-29). During the first months of life, all infants developed progressive encephalopathy, acquired microcephaly, prolonged bouts of apnea, and bradycardia, leading to cardiac arrest and death at a median age of 3.5 months (range: 20 days to 30 months). Only 7 infants (37%) received a definite diagnosis before death, at a median age of 34 days (range: 25-126), and almost two-thirds (12/19, 63%) were diagnosed 8 days to 12 years postmortem (median: 6.5 years). Neuropathology examination, performed in 3 patients, revealed severely delayed myelination and diffuse astrogliosis, sparing the upper cortical layers. DISCUSSION: BRAT1 encephalopathy is a neonatal-onset, rapidly progressive neurologic disorder. Neonates are often misdiagnosed as having hyperekplexia, and many die undiagnosed. The key phenotypic features are multifocal myoclonus, an organized EEG, progressive, persistent, and diffuse hypertonia, and an evolution into refractory multifocal seizures, prolonged bouts of apnea, bradycardia, and early death. Early recognition of BRAT1 encephalopathy allows for prompt workup, appropriate management, and genetic counseling.


Brain Diseases , Hyperekplexia , Myoclonus , Humans , Apnea , Bradycardia , Brain Diseases/diagnosis , Brain Diseases/genetics , Seizures/genetics , Phenotype , Muscle Hypertonia , Nuclear Proteins/genetics
7.
Neurol Int ; 13(2): 184-189, 2021 Apr 29.
Article En | MEDLINE | ID: mdl-33946630

Glutamate, the major excitatory neurotransmitter, plays a ubiquitous role in most aspects of normal brain functioning. Its indispensable position is paradoxically doubled by a high excitotoxic potential following disruption of its dynamic equilibrium. Several lines of evidence have suggested the involvement of the glutamatergic N-methyl-D-aspartate receptor (NMDAR) in learning, memory formation, and human cognition. Furthermore, NMDARs play a pivotal role in various neuropsychiatric disorders, recently being identified as an important locus for disease-associated genomic variation. The GRIN2A gene encodes the NMDAR's GluN2A subunit. Genetic alterations of GRIN2A result in phenotypic pleiotropy, predisposing to a broad range of epilepsy syndromes, with an elusive and unpredictable evolution and response to treatment. The archetypal GRIN2A-related phenotype comprises the idiopathic focal epilepsies (IFEs), with a higher incidence of GRIN2A mutants among entities at the more severe end of the spectrum. We report the case of a patient heterozygous for GRIN2A, c.1081C>T, presenting with febrile convulsions and later superimposed atonic seizures, expressive language delay, and macrocephaly. As the number of reported GRIN2A variants is continuously increasing, the phenotypic boundaries gradually grow faint. Therefore, it is fundamental to maintain an acute critical awareness of the possible genetic etiology of different epilepsy syndromes. So far, therapeutic strategies rely on empirical observations relating genotypes to specific drugs, but the overall success of treatment remains unpredictable. Deciphering the functional consequences of individual GRIN2A variants could lead to the development of precision therapeutic approaches for patients carrying NMDAR mutations.

...