Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38156703

RESUMEN

Odysseus (OdsH) was the first speciation gene described in Drosophila related to hybrid sterility in offspring of mating between Drosophila mauritiana and Drosophila simulans. Its origin is attributed to the duplication of the gene unc-4 in the subgenus Sophophora. By using a much larger sample of Drosophilidae species, we showed that contrary to what has been previously proposed, OdsH origin occurred 62 MYA. Evolutionary rates, expression, and transcription factor-binding sites of OdsH evidence that it may have rapidly experienced neofunctionalization in male sexual functions. Furthermore, the analysis of the OdsH peptide allowed the identification of mutations of D. mauritiana that could result in incompatibility in hybrids. In order to find if OdsH could be related to hybrid sterility, beyond Sophophora, we explored the expression of OdsH in Drosophila arizonae and Drosophila mojavensis, a pair of sister species with incomplete reproductive isolation. Our data indicated that OdsH expression is not atypical in their male-sterile hybrids. In conclusion, we have proposed that the origin of OdsH occurred earlier than previously proposed, followed by neofunctionalization. Our results also suggested that its role as a speciation gene might be restricted to D. mauritiana and D. simulans.


Asunto(s)
Proteínas de Drosophila , Infertilidad , Animales , Masculino , Evolución Biológica , Drosophila/genética , Proteínas de Drosophila/genética , Hibridación Genética
2.
Nucleic Acids Res ; 51(18): 9764-9784, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615575

RESUMEN

Transposable elements (TEs) produce structural variants and are considered an important source of genetic diversity. Notably, TE-gene fusion transcripts, i.e. chimeric transcripts, have been associated with adaptation in several species. However, the identification of these chimeras remains hindered due to the lack of detection tools at a transcriptome-wide scale, and to the reliance on a reference genome, even though different individuals/cells/strains have different TE insertions. Therefore, we developed ChimeraTE, a pipeline that uses paired-end RNA-seq reads to identify chimeric transcripts through two different modes. Mode 1 is the reference-guided approach that employs canonical genome alignment, and Mode 2 identifies chimeras derived from fixed or insertionally polymorphic TEs without any reference genome. We have validated both modes using RNA-seq data from four Drosophila melanogaster wild-type strains. We found ∼1.12% of all genes generating chimeric transcripts, most of them from TE-exonized sequences. Approximately ∼23% of all detected chimeras were absent from the reference genome, indicating that TEs belonging to chimeric transcripts may be recent, polymorphic insertions. ChimeraTE is the first pipeline able to automatically uncover chimeric transcripts without a reference genome, consisting of two running Modes that can be used as a tool to investigate the contribution of TEs to transcriptome plasticity.

3.
Sci Rep ; 11(1): 9844, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972659

RESUMEN

Interspecific hybridization is a stressful condition that can lead to sterility and/or inviability through improper gene regulation in Drosophila species with a high divergence time. However, the extent of these abnormalities in hybrids of recently diverging species is not well known. Some studies have shown that in Drosophila, the mechanisms of postzygotic isolation may evolve more rapidly in males than in females and that the degree of viability and sterility is associated with the genetic distance between species. Here, we used transcriptomic comparisons between two Drosophila mojavensis subspecies and D. arizonae (repleta group, Drosophila) and identified greater differential gene expression in testes than in ovaries. We tested the hypothesis that the severity of the interspecies hybrid phenotype is associated with the degree of gene misregulation. We showed limited gene misregulation in fertile females and an increase in the amount of misregulation in males with more severe sterile phenotypes (motile vs. amotile sperm). In addition, for these hybrids, we identified candidate genes that were mostly associated with spermatogenesis dysfunction.


Asunto(s)
Drosophila/fisiología , Hibridación Genética , Infertilidad Masculina/veterinaria , Espermatogénesis/genética , Testículo/patología , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Especiación Genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ovario/patología , Aislamiento Reproductivo , Factores Sexuales , Motilidad Espermática/genética
4.
Biochim Biophys Acta Gen Subj ; 1864(7): 129597, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156582

RESUMEN

The arginine repressor (ArgR) regulates the expression of genes involved in arginine biosynthesis. Upon attaining a threshold concentration of arginine in the cytoplasm, the trimeric C-terminal domain of ArgR binds three arginines in a shallow surface cleft and subsequently hexamerizes forming a dimer of trimers containing six Arg co-repressor molecules which are buried at the subunit interfaces. The N-terminal domains of this complex bind to the DNA promoter thereby interrupting the transcription of the genes related to Arg biosynthesis. The crystal structures of the wild type and mutant Pro115Gln ArgR from Corynebacterium pseudotuberculosis determined at 1.7 Å demonstrate that a single amino acid substitution switches co-repressor specificity from Tyr to Arg. Molecular dynamics simulations indicate that the first step, i.e., the binding of the co-repressor, occurs in the trimeric state and that Pro115Gln ArgR preferentially binds Arg. It was also shown that, in Pro115 ArgR hexamers, the concomitant binding of sodium ions shifts selectivity to Tyr. Structural data combined with phylogenetic analyses of ArgR from C. pseudotuberculosis suggest that substitutions in the binding pocket at position 115 may alter its specificity for amino acids and that the length of the protein interdomain linker can provide further functional flexibility. These results support the existence of alternative ArgR regulatory mechanisms in this pathogenic bacterium.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium pseudotuberculosis/genética , Filogenia , Proteínas Represoras/genética , Transcripción Genética , Secuencia de Aminoácidos/genética , Arginina/biosíntesis , Arginina/genética , Sitios de Unión , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Mutación/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética
5.
Genes (Basel) ; 11(2)2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041215

RESUMEN

Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion of one or several TE families, called bursts of transposition. We previously proposed that bursts of the Mariner family (DNA transposons) contributed to the speciation of Rhodnius prolixus Stål, 1859. This hypothesis motivated us to study two additional species of the R. prolixus complex: Rhodnius montenegrensis da Rosa et al., 2012 and Rhodnius marabaensis Souza et al., 2016, together with a new, de novo annotation of the R. prolixus repeatome using unassembled short reads. Our analysis reveals that the total amount of TEs present in Rhodnius genomes (19% to 23.5%) is three to four times higher than that expected based on the original quantifications performed for the original genome description of R. prolixus. We confirm here that the repeatome of the three species is dominated by Class II elements of the superfamily Tc1-Mariner, as well as members of the LINE order (Class I). In addition to R. prolixus, we also identified a recent burst of transposition of the Mariner family in R. montenegrensis and R. marabaensis, suggesting that this phenomenon may not be exclusive to R. prolixus. Rather, we hypothesize that whilst the expansion of Mariner elements may have contributed to the diversification of the R. prolixus-R. robustus species complex, the distinct ecological characteristics of these new species did not drive the general evolutionary trajectories of these TEs.


Asunto(s)
Elementos Transponibles de ADN , Genoma de los Insectos , Proteínas de Insectos/genética , Rhodnius/clasificación , Rhodnius/genética , Animales , Ecología , Filogenia , Especificidad de la Especie
6.
Mob DNA ; 10: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31709017

RESUMEN

BACKGROUND: The use of large-scale genomic analyses has resulted in an improvement of transposable element sampling and a significant increase in the number of reported HTT (horizontal transfer of transposable elements) events by expanding the sampling of transposable element sequences in general and of specific families of these elements in particular, which were previously poorly sampled. In this study, we investigated the occurrence of HTT events in a group of elements that, until recently, were uncommon among the HTT records in Drosophila - the Jockey elements, members of the LINE (long interspersed nuclear element) order of non-LTR (long terminal repeat) retrotransposons. The sequences of 111 Jockey families deposited in Repbase that met the criteria of the analysis were used to identify Jockey sequences in 48 genomes of Drosophilidae (genus Drosophila, subgenus Sophophora: melanogaster, obscura and willistoni groups; subgenus Drosophila: immigrans, melanica, repleta, robusta, virilis and grimshawi groups; subgenus Dorsilopha: busckii group; genus/subgenus Zaprionus and genus Scaptodrosophila). RESULTS: Phylogenetic analyses revealed 72 Jockey families in 41 genomes. Combined analyses revealed 15 potential HTT events between species belonging to different genera and species groups of Drosophilidae, providing evidence for the flow of genetic material favoured by the spatio-temporal sharing of these species present in the Palaeartic or Afrotropical region. CONCLUSIONS: Our results provide phylogenetic, biogeographic and temporal evidence of horizontal transfers of the Jockey elements, increase the number of rare records of HTT in specific families of LINE elements, increase the number of known occurrences of these events, and enable a broad understanding of the evolutionary dynamics of these elements and the host species.

7.
Am J Bot ; 105(10): 1725-1734, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30324691

RESUMEN

PREMISE OF THE STUDY: Historical abiotic and biotic factors have strongly affected species diversification and speciation. Although pre-Pleistocene events have been linked to the divergence of several Neotropical organisms, studies have highlighted a more prominent role of Pleistocene climatic oscillations in shaping current patterns of genetic variation of plants. METHODS: We performed phylogeographic analyses based on plastidial markers and modeled the current distribution and paleodistribution of Bromelia balansae (Bromeliaceae), an herbaceous species with a wide geographical distribution in South America, to infer the processes underlying its evolutionary history. KEY RESULTS: Combined molecular and paleodistributional modeling analyses indicated retraction during the Last Glacial Maximum followed by interglacial expansion. Populations occurring in the semideciduous Atlantic Forest and the Cerrado formed two distinct genetic clusters, which have been historically or ecologically isolated since late Pliocene to early Pleistocene. Populations located in the transition zone had higher levels of genetic diversity, as expected by the long-term climatic stability in the region detected in our ecological niche models. CONCLUSIONS: Our study adds important information on how herbaceous species have been affected by past climate in Central and Southeast Brazil, helping to disentangle the complex processes that have triggered the evolution of Neotropical biota.


Asunto(s)
Evolución Biológica , Bromelia/fisiología , Ecosistema , Filogeografía , Dispersión de las Plantas , Brasil , Bromelia/genética , Modelos Biológicos , América del Sur
8.
Genome Biol Evol ; 10(10): 2671-2685, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165545

RESUMEN

The frequency of horizontal transfers of transposable elements (HTTs) varies among the types of elements according to the transposition mode and the geographical and temporal overlap of the species involved in the transfer. The drosophilid species of the genus Zaprionus and those of the melanogaster, obscura, repleta, and virilis groups of the genus Drosophila investigated in this study shared space and time at some point in their evolutionary history. This is particularly true of the subgenus Zaprionus and the melanogaster subgroup, which overlapped both geographically and temporally in Tropical Africa during their period of origin and diversification. Here, we tested the hypothesis that this overlap may have facilitated the transfer of retrotransposons without long terminal repeats (non-LTRs) between these species. We estimated the HTT frequency of the non-LTRs BS and Helena at the genome-wide scale by using a phylogenetic framework and a vertical and horizontal inheritance consistence analysis (VHICA). An excessively low synonymous divergence among distantly related species and incongruities between the transposable element and species phylogenies allowed us to propose at least four relatively recent HTT events of Helena and BS involving ancestors of the subgroup melanogaster and ancestors of the subgenus Zaprionus during their concomitant diversification in Tropical Africa, along with older possible events between species of the subgenera Drosophila and Sophophora. This study provides the first evidence for HTT of non-LTRs retrotransposons between Drosophila and Zaprionus, including an in-depth reconstruction of the time frame and geography of these events.


Asunto(s)
Elementos Transponibles de ADN , Drosophila/genética , Transferencia de Gen Horizontal , Genoma de los Insectos , Animales , Filogenia
9.
PLoS Comput Biol ; 14(4): e1006097, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29684010

RESUMEN

Transposable elements (TEs) are repetitive nucleotide sequences that make up a large portion of eukaryotic genomes. They can move and duplicate within a genome, increasing genome size and contributing to genetic diversity within and across species. Accurate identification and classification of TEs present in a genome is an important step towards understanding their effects on genes and their role in genome evolution. We introduce TE-Learner, a framework based on machine learning that automatically identifies TEs in a given genome and assigns a classification to them. We present an implementation of our framework towards LTR retrotransposons, a particular type of TEs characterized by having long terminal repeats (LTRs) at their boundaries. We evaluate the predictive performance of our framework on the well-annotated genomes of Drosophila melanogaster and Arabidopsis thaliana and we compare our results for three LTR retrotransposon superfamilies with the results of three widely used methods for TE identification or classification: RepeatMasker, Censor and LtrDigest. In contrast to these methods, TE-Learner is the first to incorporate machine learning techniques, outperforming these methods in terms of predictive performance, while able to learn models and make predictions efficiently. Moreover, we show that our method was able to identify TEs that none of the above method could find, and we investigated TE-Learner's predictions which did not correspond to an official annotation. It turns out that many of these predictions are in fact strongly homologous to a known TE.


Asunto(s)
Aprendizaje Automático , Retroelementos , Secuencias Repetidas Terminales , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biología Computacional , Secuencia Conservada , ADN de Plantas/genética , Árboles de Decisión , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Genoma de los Insectos , Genoma de Planta , Programas Informáticos
10.
Genetica ; 145(3): 275-293, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28424974

RESUMEN

Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.


Asunto(s)
Anopheles/genética , Elementos Transponibles de ADN , Transcriptoma , Animales , Genoma de los Insectos
11.
Mol Genet Genomics ; 292(3): 565-583, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28204924

RESUMEN

The coffee berry borer (CBB) Hypothenemus hampei is the most limiting pest of coffee production worldwide. The CBB genome has been recently sequenced; however, information regarding the presence and characteristics of transposable elements (TEs) was not provided. Using systematic searching strategies based on both de novo and homology-based approaches, we present a library of TEs from the draft genome of CBB sequenced by the Colombian Coffee Growers Federation. The library consists of 880 sequences classified as 66% Class I (LTRs: 46%, non-LTRs: 20%) and 34% Class II (DNA transposons: 8%, Helitrons: 16% and MITEs: 10%) elements, including families of the three main LTR (Gypsy, Bel-Pao and Copia) and non-LTR (CR1, Daphne, I/Nimb, Jockey, Kiri, R1, R2 and R4) clades and DNA superfamilies (Tc1-mariner, hAT, Merlin, P, PIF-Harbinger, PiggyBac and Helitron). We propose the existence of novel families: Hypo, belonging to the LTR Gypsy superfamily; Hamp, belonging to non-LTRs; and rosa, belonging to Class II or DNA transposons. Although the rosa clade has been previously described, it was considered to be a basal subfamily of the mariner family. Based on our phylogenetic analysis, including Tc1, mariner, pogo, rosa and Lsra elements from other insects, we propose that rosa and Lsra elements are subfamilies of an independent family of Class II elements termed rosa. The annotations obtained indicate that a low percentage of the assembled CBB genome (approximately 8.2%) consists of TEs. Although these TEs display high diversity, most sequences are degenerate, with few full-length copies of LTR and DNA transposons and several complete and putatively active copies of non-LTR elements. MITEs constitute approximately 50% of the total TEs content, with a high proportion associated with DNA transposons in the Tc1-mariner superfamily.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma de los Insectos/genética , Secuencias Repetidas Terminales/genética , Gorgojos/genética , Animales , Coffea
12.
Sci Rep ; 7: 40618, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091568

RESUMEN

Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila/genética , Regulación de la Expresión Génica , Hibridación Genética , Animales , Secuencia Conservada/genética , Femenino , Ontología de Genes , Genes de Insecto , Geografía , Patrón de Herencia/genética , Masculino , México , ARN Interferente Pequeño/metabolismo , Especificidad de la Especie , Transcriptoma/genética , Estados Unidos
13.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627243

RESUMEN

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Asunto(s)
Adaptación Fisiológica/genética , Enfermedad de Chagas , Interacciones Huésped-Parásitos/genética , Insectos Vectores , Rhodnius , Trypanosoma cruzi/fisiología , Animales , Secuencia de Bases , Transferencia de Gen Horizontal , Humanos , Insectos Vectores/genética , Insectos Vectores/parasitología , Datos de Secuencia Molecular , Rhodnius/genética , Rhodnius/parasitología , Wolbachia/genética
14.
Bioinformatics ; 31(11): 1836-8, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25638811

RESUMEN

Profile hidden Markov models (profile HMMs) are known to efficiently predict whether an amino acid (AA) sequence belongs to a specific protein family. Profile HMMs can also be used to search for protein domains in genome sequences. In this case, HMMs are typically learned from AA sequences and then used to search on the six-frame translation of nucleotide (NT) sequences. However, this approach demands additional processing of the original data and search results. Here, we propose an alternative and more direct method which converts an AA alignment into an NT one, after which an NT-based HMM is trained to be applied directly on a genome.


Asunto(s)
Genómica/métodos , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Animales , Bacterias/enzimología , Bacterias/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cadenas de Markov , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Estructura Terciaria de Proteína , Ribonucleasa H/química
15.
Genome Biol Evol ; 6(7): 1806-17, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24966182

RESUMEN

The non-long terminal repeat (LTR) retrotransposon I, which belongs to the I superfamily of non-LTR retrotransposons, is well known in Drosophila because it transposes at a high frequency in the female germline cells in I-R hybrid dysgenic crosses of Drosophila melanogaster. Here, we report the occurrence and the upregulation of an I-like element in the hybrids of two sister species belonging to the repleta group of the genus Drosophila, D. mojavensis, and D. arizonae. These two species display variable degrees of pre- and postzygotic isolation, depending on the geographic origin of the strains. We took advantage of these features to explore the transposable element (TE) dynamics in interspecific crosses. We fully characterized the copies of this TE family in the D. mojavensis genome and identified at least one complete copy. We showed that this element is transcriptionally active in the ovaries and testes of both species and in their hybrids. Moreover, we showed that this element is upregulated in hybrid males, which could be associated with the male-sterile phenotype.


Asunto(s)
Quimera/genética , Drosophila melanogaster/genética , Genómica , Secuencias Repetidas Terminales/genética , Animales , Secuencia de Bases , Drosophila melanogaster/clasificación , Femenino , Masculino , Ovario , Filogenia , Retroelementos/genética , Alineación de Secuencia , Testículo
16.
Oncol Rep ; 31(1): 435-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24173085

RESUMEN

The genome of mammals is characterized by a large number of non-LTR retrotransposons, and among them, the CAN SINEs are characteristics of the canine species. Small amounts of DNA freely circulate in normal blood serum and high amounts are found in human patients with cancer, characterizing it as a candidate tumor-biomarker. The aim of this study was to estimate, through its absolute expression, the number of copies of CAN SINE sequences present in free circulating DNA of female dogs with mammary cancer, in order to correlate with the clinical and pathological characteristics and the follow-up period. The copy number of CAN SINE sequences was estimated by qPCR in 28 female dogs with mammary neoplasia. The univariate analysis showed an increased number of copies in female dogs with mammary tumor in female dogs >10 years old (p=0.02) and tumor time >18 months (p<0.05). The Kaplan-Meier test demonstrated a negative correlation between an increased number of copies and survival time (p=0.03). High amounts of CAN SINE fragments can be good markers for the detection of tumor DNA in blood and may characterize it as a marker of poor prognosis, being related to female dogs with shorter survival times. This estimate can be used as a prognostic marker in non-invasive breast cancer research and is useful in predicting tumor progression and patient monitoring.


Asunto(s)
Biomarcadores de Tumor/sangre , Perros/genética , Neoplasias Mamarias Animales/sangre , Neoplasias Mamarias Animales/genética , Elementos de Nucleótido Esparcido Corto/genética , Animales , Biomarcadores de Tumor/genética , ADN/sangre , Enfermedades de los Perros/genética , Femenino , Dosificación de Gen , Neoplasias Mamarias Animales/mortalidad , Reacción en Cadena de la Polimerasa/veterinaria , Pronóstico
17.
Gene ; 537(1): 93-9, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24361809

RESUMEN

In the present study, an in silico analysis was performed to identify transposable element (TE) fragments inserted in Cyps with functions associated with resistance to insecticides and developmental regulation as well as in neighboring genes in two sibling species, Drosophila melanogaster and Drosophila simulans. The Cyps associated with insecticide resistance and their neighboring non-Cyp genes have accumulated a greater number of TE fragments than the other Cyps or a random sample of genes, predominantly in the 5'-flanking regions. Most of the insertions were due to DNA transposons, with DNAREP1 fragments being the most common. These fragments carry putative binding sites for transcription factors, which reinforces the hypothesis that DNAREP1 may influence gene regulation and play a role in the adaptation of the Drosophila species.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Elementos Transponibles de ADN , Drosophila/fisiología , Resistencia a los Insecticidas/genética , Factores de Transcripción/metabolismo , Región de Flanqueo 5' , Animales , Sitios de Unión/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética
18.
PLoS One ; 8(11): e78931, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244387

RESUMEN

Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences.


Asunto(s)
Cromosomas de las Plantas , Coffea , Elementos Transponibles de ADN/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta/fisiología , Transcripción Genética/fisiología , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Coffea/genética , Coffea/metabolismo
19.
BMC Infect Dis ; 13: 61, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23374983

RESUMEN

BACKGROUND: The quasispecies composition of Hepatitis C virus (HCV) could have important implications with regard to viral persistence and response to interferon-based therapy. The complete NS5A was analyzed to evaluate whether the composition of NS5A quasispecies of HCV 1a/1b is related to responsiveness to combined interferon pegylated (PEG-IFN) and ribavirin therapy. METHODS: Viral RNA was isolated from serum samples collected before, during and after treatment from virological sustained responder (SVR), non-responder (NR) and the end-of-treatment responder patients (ETR). NS5A region was amplified, cloned and sequenced. Six hundred and ninety full-length NS5A sequences were analyzed. RESULTS: This study provides evidence that lower nucleotide diversity of the NS5A region pre-therapy is associated with viral clearance. Analysis of samples of NRs and the ETRs time points showed that genetic diversity of populations tend to decrease over time. Post-therapy population of ETRs presented higher genetic distance from baseline probably due to the bottleneck phenomenon observed for those patients in the end of treatment. The viral effective population of those patients also showed a strong decrease after therapy. Otherwise, NRs demonstrated a continuous variation or stability of effective populations and genetic diversity over time that did not seem to be related to therapy. Phylogenetic relationships concerning complete NS5A sequences obtained from patients did not demonstrate clustering associated with specific response patterns. However, distinctive clustering of pre/post-therapy sequences was observed. In addition, the evolution of quasispecies over time was subjected to purifying or relaxed purifying selection. Codons 157 (P03), 182 and 440 (P42), 62 and 404 (P44) were found to be under positive selective pressure but it failed to be related to the therapy. CONCLUSION: These results confirm the hypothesis that a relationship exists between NS5A heterogeneity and response to therapy in patients infected with chronic hepatitis C.


Asunto(s)
Antivirales/uso terapéutico , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/virología , Adulto , Secuencia de Aminoácidos , Análisis por Conglomerados , Evolución Molecular , Femenino , Hepacivirus/clasificación , Hepacivirus/genética , Hepatitis C Crónica/sangre , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Filogenia , ARN Viral/sangre , Alineación de Secuencia , Análisis de Secuencia de ARN , Proteínas no Estructurales Virales/genética
20.
BMC Genomics ; 13: 272, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726298

RESUMEN

BACKGROUND: Transposable elements (TEs), both DNA transposons and retrotransposons, are genetic elements with the main characteristic of being able to mobilize and amplify their own representation within genomes, utilizing different mechanisms of transposition. An almost universal feature of TEs in eukaryotic genomes is their inability to transpose by themselves, mainly as the result of sequence degeneration (by either mutations or deletions). Most of the elements are thus either inactive or non-autonomous. Considering that the bulk of some eukaryotic genomes derive from TEs, they have been conceived as "TE graveyards." It has been shown that once an element has been inactivated, it progressively accumulates mutations and deletions at neutral rates until completely losing its identity or being lost from the host genome; however, it has also been shown that these "neutral sequences" might serve as raw material for domestication by host genomes. RESULTS: We have analyzed the sequence structural variations, nucleotide divergence, and pattern of insertions and deletions of several superfamilies of TEs belonging to both class I (long terminal repeats [LTRs] and non-LTRs [NLTRs]) and II in the genome of Anopheles gambiae, aiming at describing the landscape of deterioration of these elements in this particular genome. Our results describe a great diversity in patterns of deterioration, indicating lineage-specific differences including the presence of Solo-LTRs in the LTR lineage, 5'-deleted NLTRs, and several non-autonomous and MITEs in the class II families. Interestingly, we found fragments of NLTRs corresponding to the RT domain, which preserves high identity among them, suggesting a possible remaining genomic role for these domains. CONCLUSIONS: We show here that the TEs in the An. gambiae genome deteriorate in different ways according to the class to which they belong. This diversity certainly has implications not only at the host genomic level but also at the amplification dynamic and evolution of the TE families themselves.


Asunto(s)
Anopheles/genética , Elementos Transponibles de ADN/genética , Genoma , Animales , Retroelementos , Secuencias Repetidas Terminales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...