Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 11(4): e12211, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35411723

RESUMEN

Tumour cells are characterized by having lost their differentiation state. They constitutively secrete small extracellular vesicles (sEV) called exosomes when they come from late endosomes. Dendrogenin A (DDA) is an endogenous tumour suppressor cholesterol-derived metabolite. It is a new class of ligand of the nuclear Liver X receptors (LXR) which regulate cholesterol homeostasis and immunity. We hypothesized that DDA, which induces tumour cell differentiation, inhibition of tumour growth and immune cell infiltration into tumours, could functionally modify sEV secreted by tumour cells. Here, we have shown that DDA differentiates tumour cells by acting on the LXRß. This results in an increased production of sEV (DDA-sEV) which includes exosomes. The DDA-sEV secreted from DDA-treated cells were characterized for their content and activity in comparison to sEV secreted from control cells (C-sEV). DDA-sEV were enriched, relatively to C-sEV, in several proteins and lipids such as differentiation antigens, "eat-me" signals, lipidated LC3 and the endosomal phospholipid bis(monoacylglycero)phosphate, which stimulates dendritic cell maturation and a Th1 T lymphocyte polarization. Moreover, DDA-sEV inhibited the growth of tumours implanted into immunocompetent mice compared to control conditions. This study reveals a pharmacological control through a nuclear receptor of exosome-enriched tumour sEV secretion, composition and immune function. Targeting the LXR may be a novel way to reprogram tumour cells and sEV to stimulate immunity against cancer.


Asunto(s)
Exosomas , Neoplasias , Animales , Colestanoles , Colesterol/metabolismo , Exosomas/metabolismo , Imidazoles , Receptores X del Hígado/metabolismo , Ratones , Neoplasias/tratamiento farmacológico
2.
Nat Commun ; 8(1): 1903, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29199269

RESUMEN

Dendrogenin A (DDA) is a newly discovered cholesterol metabolite with tumor suppressor properties. Here, we explored its efficacy and mechanism of cell death in melanoma and acute myeloid leukemia (AML). We found that DDA induced lethal autophagy in vitro and in vivo, including primary AML patient samples, independently of melanoma Braf status or AML molecular and cytogenetic classifications. DDA is a partial agonist on liver-X-receptor (LXR) increasing Nur77, Nor1, and LC3 expression leading to autolysosome formation. Moreover, DDA inhibited the cholesterol biosynthesizing enzyme 3ß-hydroxysterol-Δ8,7-isomerase (D8D7I) leading to sterol accumulation and cooperating in autophagy induction. This mechanism of death was not observed with other LXR ligands or D8D7I inhibitors establishing DDA selectivity. The potent anti-tumor activity of DDA, its original mechanism of action and its low toxicity support its clinical evaluation. More generally, this study reveals that DDA can direct control a nuclear receptor to trigger lethal autophagy in cancers.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Colestanoles/farmacología , Imidazoles/farmacología , Leucemia Mieloide Aguda , Receptores X del Hígado/efectos de los fármacos , Melanoma , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Agonismo Parcial de Drogas , Expresión Génica/efectos de los fármacos , Células HEK293 , Células HL-60 , Humanos , Técnicas In Vitro , Receptores X del Hígado/metabolismo , Melanoma Experimental , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética
3.
J Biol Chem ; 289(41): 28697-706, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25183007

RESUMEN

The dynamic organization of G protein-coupled receptors in the plasma membrane is suspected of playing a role in their function. The regulation of the diffusion mode of the mu-opioid (MOP) receptor was previously shown to be agonist-specific. Here we investigate the regulation of MOP receptor diffusion by heterologous activation of other G protein-coupled receptors and characterize the dynamic properties of the MOP receptor within the heterodimer MOP/neuropeptide FF (NPFF2) receptor. The data show that the dynamics and signaling of the MOP receptor in SH-SY5Y cells are modified by the activation of α2-adrenergic and NPFF2 receptors, but not by the activation of receptors not described to interact with the opioid receptor. By combining, for the first time, fluorescence recovery after photobleaching at variable radius experiments with bimolecular fluorescence complementation, we show that the MOP/NPFF2 heterodimer adopts a specific diffusion behavior that corresponds to a mix of the dynamic properties of both MOP and NPFF2 receptors. Altogether, the data suggest that heterologous regulation is accompanied by a specific organization of receptors in the membrane.


Asunto(s)
Analgésicos Opioides/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptor Cross-Talk/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores Opioides mu/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clonidina/farmacología , Difusión , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes , Regulación de la Expresión Génica , Humanos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptido Y/farmacología , Oligopéptidos/farmacología , Multimerización de Proteína , Receptores Adrenérgicos alfa 2/genética , Receptores de Neuropéptido/genética , Receptores Opioides mu/genética , Transducción de Señal
4.
Biochim Biophys Acta ; 1841(1): 108-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24140720

RESUMEN

Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.


Asunto(s)
Comunicación Celular , Colesterol/metabolismo , Eicosanoides/metabolismo , Exosomas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Metabolismo de los Lípidos , Animales , Transporte Biológico Activo , Exosomas/patología , Humanos
5.
J Biol Chem ; 286(39): 34426-39, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21828046

RESUMEN

During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process.


Asunto(s)
Diferenciación Celular/fisiología , Endosomas/metabolismo , Lípidos de la Membrana/biosíntesis , Proteínas de la Membrana/biosíntesis , Reticulocitos/metabolismo , Animales , Hemoglobinas/biosíntesis , Masculino , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Reticulocitos/citología
6.
Nucleic Acids Res ; 38(11): 3692-708, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20164093

RESUMEN

HIV-1 integrase catalyzes the insertion of the viral genome into chromosomal DNA. We characterized the structural determinants of the 3'-processing reaction specificity--the first reaction of the integration process--at the DNA-binding level. We found that the integrase N-terminal domain, containing a pseudo zinc-finger motif, plays a key role, at least indirectly, in the formation of specific integrase-DNA contacts. This motif mediates a cooperative DNA binding of integrase that occurs only with the cognate/viral DNA sequence and the physiologically relevant Mg(2+) cofactor. The DNA-binding was essentially non-cooperative with Mn(2+) or using non-specific/random sequences, regardless of the metallic cofactor. 2,2'-Dithiobisbenzamide-1 induced zinc ejection from integrase by covalently targeting the zinc-finger motif, and significantly decreased the Hill coefficient of the Mg(2+)-mediated integrase-DNA interaction, without affecting the overall affinity. Concomitantly, 2,2'-dithiobisbenzamide-1 severely impaired 3'-processing (IC(50) = 11-15 nM), suggesting that zinc ejection primarily perturbs the nature of the active integrase oligomer. A less specific and weaker catalytic effect of 2,2'-dithiobisbenzamide-1 is mediated by Cys 56 in the catalytic core and, notably, accounts for the weaker inhibition of the non-cooperative Mn(2+)-dependent 3'-processing. Our data show that the cooperative DNA-binding mode is strongly related to the sequence-specific DNA-binding, and depends on the simultaneous presence of the Mg(2+) cofactor and the zinc effector.


Asunto(s)
ADN Viral/química , Proteínas de Unión al ADN/química , Integrasa de VIH/química , Zinc/química , Secuencias de Aminoácidos , Secuencia de Bases , Benzamidas/farmacología , Dominio Catalítico , ADN Viral/metabolismo , Proteínas de Unión al ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Integrasa de VIH/efectos de los fármacos , Integrasa de VIH/metabolismo , Historia Medieval , Magnesio/química , Espectrometría de Masas , Unión Proteica , Estructura Terciaria de Proteína , Dedos de Zinc
7.
Retrovirology ; 5: 114, 2008 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19091057

RESUMEN

Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1). This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.


Asunto(s)
Integrasa de VIH/metabolismo , VIH-1/enzimología , VIH-1/fisiología , Integración Viral
8.
J Biol Chem ; 283(41): 27838-27849, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18697740

RESUMEN

Integration catalyzed by integrase (IN) is a key process in the retrovirus life cycle. Many biochemical or structural human immunodeficiency virus, type 1 (HIV-1) IN studies have been severely impeded by its propensity to aggregate. We characterized a retroviral IN (primate foamy virus (PFV-1)) that displays a solubility profile different from that of HIV-1 IN. Using various techniques, including fluorescence correlation spectroscopy, time-resolved fluorescence anisotropy, and size exclusion chromatography, we identified a monomer-dimer equilibrium for the protein alone, with a half-transition concentration of 20-30 mum. We performed specific enzymatic labeling of PFV-1 IN and measured the fluorescence resonance energy transfer between carboxytetramethylrhodamine-labeled IN and fluorescein-labeled DNA substrates. FRET and fluorescence anisotropy highlight the preferential binding of PFV-1 IN to the 3'-end processing site. Sequence-specific DNA binding was not observed with HIV-1 IN, suggesting that the intrinsic ability of retroviral INs to bind preferentially to the processing site is highly underestimated in the presence of aggregates. IN is in a dimeric state for 3'-processing on short DNA substrates, whereas IN polymerization, mediated by nonspecific contacts at internal DNA positions, occurs on longer DNAs. Additionally, aggregation, mediated by nonspecific IN-IN interactions, occurs preferentially with short DNAs at high IN/DNA ratios. The presence of either higher order complex is detrimental for specific activity. Ionic strength favors catalytically competent over higher order complexes by selectively disrupting nonspecific IN-IN interactions. This counteracting effect was not observed with polymerization. The synergic effect on the selection of specific/competent complexes, obtained by using short DNA substrates under high salt conditions, may have important implications for further structural studies in IN.DNA complexes.


Asunto(s)
ADN/química , Integrasas/química , Modelos Químicos , Virus Espumoso de los Simios/enzimología , Proteínas Virales/química , Animales , Catálisis , Transferencia Resonante de Energía de Fluorescencia , Cobayas , Concentración Osmolar
9.
J Biol Chem ; 281(32): 22707-19, 2006 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16774912

RESUMEN

The 3'-processing of the extremities of viral DNA is the first of two reactions catalyzed by HIV-1 integrase (IN). High order IN multimers (tetramers) are required for complete integration, but it remains unclear which oligomer is responsible for the 3'-processing reaction. Moreover, IN tends to aggregate, and it is unknown whether the polymerization or aggregation of this enzyme on DNA is detrimental or beneficial for activity. We have developed a fluorescence assay based on anisotropy for monitoring release of the terminal dinucleotide product in real-time. Because the initial anisotropy value obtained after DNA binding and before catalysis depends on the fractional saturation of DNA sites and the size of IN.DNA complexes, this approach can be used to study the relationship between activity and binding/multimerization parameters in the same assay. By increasing the IN:DNA ratio, we found that the anisotropy increased but the 3'-processing activity displayed a characteristic bell-shaped behavior. The anisotropy values obtained in the first phase were predictive of subsequent activity and accounted for the number of complexes. Interestingly, activity peaked and then decreased in the second phase, whereas anisotropy continued to increase. Time-resolved fluorescence anisotropy studies showed that the most competent form for catalysis corresponds to a dimer bound to one viral DNA end, whereas higher order complexes such as aggregates predominate during the second phase when activity drops off. We conclude that a single IN dimer at each extremity of viral DNA molecules is required for 3'-processing, with a dimer of dimers responsible for the subsequent full integration.


Asunto(s)
ADN/química , Integrasa de VIH/química , VIH-1/enzimología , Anisotropía , Catálisis , ADN Viral/química , Dimerización , Cinética , Modelos Químicos , Modelos Estadísticos , Nucleótidos/química , Estructura Terciaria de Proteína , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA