Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Nat Commun ; 15(1): 275, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38177131

Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD. Interestingly, the workhorse ligase CRBN has been observed to be downregulated in settings of resistance to immunomodulatory inhibitory drugs (IMiDs). Here we show that the essential E3 ligase receptor DCAF1 can be harnessed for TPD utilizing a selective, non-covalent DCAF1 binder. We confirm that this binder can be functionalized into an efficient DCAF1-BRD9 PROTAC. Chemical and genetic rescue experiments validate specific degradation via the CRL4DCAF1 E3 ligase. Additionally, a dasatinib-based DCAF1 PROTAC successfully degrades cytosolic and membrane-bound tyrosine kinases. A potent and selective DCAF1-BTK-PROTAC (DBt-10) degrades BTK in cells with acquired resistance to CRBN-BTK-PROTACs while the DCAF1-BRD9 PROTAC (DBr-1) provides an alternative strategy to tackle intrinsic resistance to VHL-degrader, highlighting DCAF1-PROTACS as a promising strategy to overcome ligase mediated resistance in clinical settings.


Carrier Proteins , Proteolysis Targeting Chimera , Ubiquitin-Protein Ligases , Carrier Proteins/metabolism , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
2.
Cell Chem Biol ; 30(3): 235-247.e12, 2023 03 16.
Article En | MEDLINE | ID: mdl-36863346

Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.


Neoplasms , Transcription Factors , Animals , Humans , Mice , Ikaros Transcription Factor , Immunotherapy , Neoplasms/therapy , Neoplasms/metabolism , T-Lymphocytes, Regulatory/metabolism , Transcription Factors/metabolism
4.
Cell Chem Biol ; 28(6): 802-812.e6, 2021 06 17.
Article En | MEDLINE | ID: mdl-33333026

The recent development of successful CAR (chimeric antigen receptor) T cell therapies has been accompanied by a need to better control potentially fatal toxicities that can arise from adverse immune reactions. Here we present a ligand-controlled CAR system, based on the IKZF3 ZF2 ß-hairpin IMiD-inducible degron, which allows for the reversible control of expression levels of type I membrane proteins, including CARs. Testing this system in an established mouse xenotransplantation model for acute lymphoblastic leukemia, we validate the ability of the CAR19-degron to target and kill CD19-positive cells displaying complete control/clearance of the tumor. We also demonstrate that the activity of CAR19-degron can be regulated in vivo when dosing a US Food and Drug Administration-approved drug, lenalidomide.


Ikaros Transcription Factor/immunology , Immunologic Factors/pharmacology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Adolescent , Animals , Cell Line , Cell Proliferation/drug effects , Female , Humans , Ikaros Transcription Factor/chemistry , Immunologic Factors/chemistry , Male , Mice , Mice, Congenic , Mice, Inbred NOD , Mice, SCID , Middle Aged , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Receptors, Chimeric Antigen/genetics , Young Adult
5.
ACS Chem Biol ; 15(10): 2636-2648, 2020 10 16.
Article En | MEDLINE | ID: mdl-32880443

Assays drive drug discovery from the exploratory phases to the clinical testing of drug candidates. As such, numerous assay technologies and methodologies have arisen to support drug discovery efforts. Robust identification and characterization of tractable chemical matter requires biochemical, biophysical, and cellular approaches and often benefits from high-throughput methods. To increase throughput, efforts have been made to provide assays in miniaturized volumes which can be arrayed in microtiter plates to support the testing of as many as 100,000 samples/day. Alongside these efforts has been the growth of microtiter plate-free formats with encoded libraries that can support the screening of billions of compounds, a hunt for new drug modalities, as well as emphasis on more disease relevant formats using complex cell models of disease states. This review will focus on recent developments in high-throughput assay technologies applied to identify starting points for drug discovery. We also provide recommendations on strategies for implementing various assay types to select high quality leads for drug development.


Drug Discovery/methods , Organic Chemicals/analysis , High-Throughput Screening Assays , Humans , Small Molecule Libraries/analysis
7.
SLAS Discov ; 25(4): 350-360, 2020 04.
Article En | MEDLINE | ID: mdl-31997692

Protein turnover is highly regulated by the posttranslational process of ubiquitination. Deregulation of the ubiquitin proteasome system (UPS) has been implicated in cancer and neurodegenerative diseases, and modulating this system has proven to be a viable approach for therapeutic intervention. The development of novel technologies that enable high-throughput studies of substrate protein ubiquitination is key for UPS drug discovery. Conventional approaches for studying ubiquitination either have high protein requirements or rely on exogenous or modified ubiquitin moieties, thus limiting their utility. In order to circumvent these issues, we developed a high-throughput live-cell assay that combines the NanoBiT luminescence-based technology with tandem ubiquitin binding entities (TUBEs) to resolve substrate ubiquitination. To demonstrate the effectiveness and utility of this assay, we studied compound-induced ubiquitination of the G to S Phase Transition 1 (GSPT1) protein. Using this assay, we characterized compounds with varying levels of GSPT1 ubiquitination activity. This method provides a live-cell-based approach for assaying substrate ubiquitination that can be adapted to study the kinetics of ubiquitin transfer onto a substrate protein of interest. In addition, our results show that this approach is portable for studying the ubiquitination of target proteins with diverse functions.


Drug Discovery , High-Throughput Screening Assays , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics , Humans , Luminescence , Protein Binding/genetics , Protein Transport/genetics , Ubiquitination/genetics
8.
Nat Chem Biol ; 16(1): 50-59, 2020 01.
Article En | MEDLINE | ID: mdl-31819276

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.


Cleavage And Polyadenylation Specificity Factor/metabolism , Leukemia, Myeloid, Acute/metabolism , RNA Precursors/metabolism , Sarcoma, Ewing/metabolism , Animals , Apoptosis/drug effects , Binding Sites , Carboxylic Ester Hydrolases/metabolism , Cell Line, Tumor , Cell Survival , Cleavage And Polyadenylation Specificity Factor/genetics , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Phenotype , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Piperazines/pharmacology , Protein Binding , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Sarcoma, Ewing/drug therapy
9.
Bioorg Med Chem Lett ; 27(20): 4589-4596, 2017 10 15.
Article En | MEDLINE | ID: mdl-28911816

Protein degradation is critical for proteostasis, and the addition of polyubiquitin chains to a substrate is necessary for its recognition by the 26S proteasome. Therapeutic intervention in the ubiquitin proteasome system has implications ranging from cancer to neurodegeneration. Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes will be discussed in this review. Approaches for targeting E3 ligase-substrate interactions as well as the proteasome will also be covered, with a focus on recently described approaches.


Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Drug Discovery , Humans , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Proteasome Endopeptidase Complex/chemistry , Small Molecule Libraries/chemistry , Ubiquitin/antagonists & inhibitors , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/metabolism
10.
Biotechniques ; 60(1): 13-20, 2016 Jan.
Article En | MEDLINE | ID: mdl-26757807

The zebrafish represents a revolutionary tool in large-scale genetic and small-molecule screens for gene and drug discovery. Transgenic zebrafish are often utilized in these screens. Many transgenic fish lines are maintained in the heterozygous state due to the lethality associated with homozygosity; thus, their progeny must be sorted to ensure a population expressing the transgene of interest for use in screens. Sorting transgenic embryos under a fluorescence microscope is very labor-intensive and demands fine-tuned motor skills. Here we report an efficient transgenic method of utilizing pigmentation rescue of nacre mutant fish for accurate naked-eye identification of both mosaic founders and stable transgenic zebrafish. This was accomplished by co-injecting two constructs with the I-SceI meganuclease enzyme into pigmentless nacre embryos: I-SceI-mitfa:mitfa-I-SceI to rescue the pigmentation and I-SceI-zpromoter:gene-of-interest-I-SceI to express the gene of interest under a zebrafish promoter (zpromoter). Pigmentation rescue reliably predicted transgene integration. Compared with other transgenic techniques, our approach significantly increases the overall percentage of founders and facilitates accurate naked-eye identification of stable transgenic fish, greatly reducing laborious fluorescence microscope sorting and PCR genotyping. Thus, this approach is ideal for generating transgenic fish for large-scale screens.


Gene Transfer Techniques , Microphthalmia-Associated Transcription Factor/genetics , Pigmentation/genetics , Promoter Regions, Genetic , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Genotype , Green Fluorescent Proteins/genetics , Microscopy, Fluorescence , Zebrafish/genetics , Zebrafish/physiology
11.
PLoS One ; 9(2): e88151, 2014.
Article En | MEDLINE | ID: mdl-24516599

Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.


Apoptosis Regulatory Proteins/metabolism , Apoptosis/radiation effects , Proto-Oncogene Proteins/metabolism , Radiation, Ionizing , Zebrafish Proteins/metabolism , bcl-Associated Death Protein/metabolism , Androstadienes/pharmacology , Animals , Apoptosis/drug effects , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/radiation effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/radiation effects , Models, Genetic , Nerve Tissue/cytology , Nerve Tissue/drug effects , Nerve Tissue/metabolism , Nerve Tissue/radiation effects , Radiation Tolerance/drug effects , Radiation Tolerance/radiation effects , Time Factors , Transcription, Genetic/drug effects , Transcription, Genetic/radiation effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wortmannin , Zebrafish/embryology , bcl-2-Associated X Protein/metabolism
12.
PLoS Genet ; 8(8): e1002922, 2012.
Article En | MEDLINE | ID: mdl-22952453

DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB-DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR-induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR-induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB-DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR-induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR-induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response.


DNA Breaks, Double-Stranded/radiation effects , Radiation Tolerance/genetics , Tumor Suppressor Protein p53/genetics , Zebrafish Proteins/genetics , Zebrafish , Animals , Apoptosis/radiation effects , Embryonic Development/radiation effects , Gene Expression Regulation , Genes, Recessive , Mutation , Neurons/radiation effects , Radiation, Ionizing , Tumor Suppressor Protein p53/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism
13.
Dev Cell ; 21(3): 492-505, 2011 Sep 13.
Article En | MEDLINE | ID: mdl-21920315

Endoplasmic reticulum (ER) stress triggers tissue-specific responses that culminate in either cellular adaptation or apoptosis, but the genetic networks distinguishing these responses are not well understood. Here we demonstrate that ER stress induced in the developing zebrafish causes rapid apoptosis in the brain, spinal cord, tail epidermis, lens, and epiphysis. Focusing on the tail epidermis, we uncover an apoptotic response that depends on Puma, but not on p53 or Chop. puma is transcriptionally activated during this ER stress response in a p53-independent manner, and is an essential mediator of epidermal apoptosis. We demonstrate that the p63 transcription factor is upregulated to initiate this apoptotic pathway and directly activates puma transcription in response to ER stress. We also show that a mutation of human Connexin 31, which causes erythrokeratoderma variabilis, induces ER stress and p63-dependent epidermal apoptosis in the zebrafish embryo, thus implicating this pathway in the pathogenesis of inherited disease.


Apoptosis/physiology , Endoplasmic Reticulum/metabolism , Epidermis/growth & development , Phosphoproteins/metabolism , Stress, Physiological , Trans-Activators/metabolism , Zebrafish Proteins/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Brefeldin A/pharmacology , Connexins/genetics , Connexins/metabolism , Endoplasmic Reticulum/drug effects , Enzyme Inhibitors/pharmacology , Epidermis/drug effects , Epidermis/metabolism , Erythrokeratodermia Variabilis/genetics , Erythrokeratodermia Variabilis/metabolism , Humans , Protein Synthesis Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Thapsigargin/pharmacology , Transcription, Genetic , Up-Regulation/physiology , Zebrafish Proteins/genetics
14.
Dev Biol ; 300(1): 321-34, 2006 Dec 01.
Article En | MEDLINE | ID: mdl-17010332

Programmed cell death through apoptosis is a pan-metazoan character involving intermolecular signaling networks that have undergone substantial lineage-specific evolution. A survey of apoptosis-related proteins encoded in the sea urchin genome provides insight into this evolution while revealing some interesting novelties, which we highlight here. First, in addition to a typical CARD-carrying Apaf-1 homologue, sea urchins have at least two novel Apaf-1-like proteins that are each linked to a death domain, suggesting that echinoderms have evolved unique apoptotic signaling pathways. Second, sea urchins have an unusually large number of caspases. While the set of effector caspases (caspases-3/7 and caspase-6) in sea urchins is similar to that found in other basal deuterostomes, signal-responsive initiator caspase subfamilies (caspases-8/10 and 9, which are respectively linked to DED and CARD adaptor domains) have undergone echinoderm-specific expansions. In addition, there are two groups of divergent caspases, one distantly related to the vertebrate interleukin converting enzyme (ICE)-like subfamily, and a large clan that does not cluster with any of the vertebrate caspases. Third, the complexity of proteins containing an anti-apoptotic BIR domain and of Bcl-2 family members approaches that of vertebrates, and is greater than that found in protostome model systems such as Drosophila or Caenorhabditis elegans. Finally, the presence of Death receptor homologues, previously known only in vertebrates, in both Strongylocentrotus purpuratus and Nematostella vectensis suggests that this family of apoptotic signaling proteins evolved early in animals and was subsequently lost in the nematode and arthropod lineage(s). Our results suggest that cell survival is contingent upon a diverse array of signals in sea urchins, more comparable in complexity to vertebrates than to arthropods or nematodes, but also with unique features that may relate to specific requirements imposed by the biphasic life cycle and/or immunological idiosyncrasies of this organism.


Apoptosis/genetics , Genome , Sea Urchins/genetics , Amino Acid Sequence , Animals , Caspases/genetics , Cell Death , Consensus Sequence , Models, Biological , Molecular Sequence Data , Phylogeny , Sea Urchins/classification , Sea Urchins/cytology , Sea Urchins/physiology , Sequence Alignment , Sequence Homology, Amino Acid
...