Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 124
1.
Food Res Int ; 186: 114322, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729712

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
2.
Article En | MEDLINE | ID: mdl-38321899

INTRODUCTION: Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals. METHOD: We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium-99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA. RESULTS: These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF. CONCLUSION: These data validated the ability of active tumor targeting by the as-developed antiCEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.

3.
BMC Microbiol ; 23(1): 364, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38008714

BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.


Escherichia coli Proteins , Mucositis , Probiotics , Mice , Humans , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Inflammation , Probiotics/therapeutic use
4.
World J Microbiol Biotechnol ; 39(9): 235, 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37365380

Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.


Antineoplastic Agents , Lactobacillus delbrueckii , Mucositis , Probiotics , Synbiotics , Mice , Animals , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Probiotics/pharmacology , Intestinal Mucosa , Prebiotics/adverse effects , Fluorouracil/adverse effects , Antineoplastic Agents/pharmacology
5.
Nutrition ; 113: 112084, 2023 09.
Article En | MEDLINE | ID: mdl-37354649

OBJECTIVES: One of the leading causes of obesity is the consumption of excess nutrients. Obesity is characterized by adipose tissue expansion, chronic low-grade inflammation, and metabolic alterations. Although consumption of a high-fat diet has been demonstrated to be a diet-induced obesity model associated with gut disorders, the same effect is not well explored in a mild-obesity model induced by high-refined carbohydrate (HC) diet intake. The intestinal tract barrier comprises mucus, epithelial cells, tight junctions, immune cells, and gut microbiota. This system is susceptible to dysfunction by excess dietary components that could increase intestinal permeability and bacterial translocation. The aim of this study was to evaluate whether an HC diet and the alterations resulting from its intake are linked to small intestine changes. METHODS: Male BALB/c mice were fed a chow or an HC diet for 8 wk. RESULTS: Although differences in body weight gain were not observed between the groups, mice fed the HC diet showed increased adiposity associated with metabolic alterations. The interferon-γ expression and myeloperoxidase levels were increased in the small intestine in mice fed an HC diet. However, the intestinal villi length, the expression of tight junctions (zonula occludens-1 and claudin-4) and tumor necrosis factor-α cytokine, and the percentage of intraepithelial lymphocytes did not differ in the jejunum or ileum between the groups. We did not observe differences in intestinal permeability and bacterial translocation. CONCLUSION: Metabolic alterations caused by consumption of an HC diet lead to a mild obesity state that does not necessarily involve significant changes in intestinal integrity.


Intestinal Mucosa , Obesity , Male , Mice , Animals , Obesity/metabolism , Intestinal Mucosa/metabolism , Diet, High-Fat/adverse effects , Inflammation/etiology , Dietary Carbohydrates/adverse effects , Dietary Carbohydrates/metabolism , Mice, Inbred C57BL
6.
Probiotics Antimicrob Proteins ; 15(2): 424-440, 2023 04.
Article En | MEDLINE | ID: mdl-36631616

Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.


Gastrointestinal Microbiome , Mucositis , Mice , Animals , Mucositis/drug therapy , Mucositis/metabolism , Mucositis/pathology , Arginine/metabolism , Intestines , Intestinal Mucosa/metabolism , Fluorouracil , Oligosaccharides/pharmacology
7.
Fundam Clin Pharmacol ; 37(3): 493-507, 2023 Jun.
Article En | MEDLINE | ID: mdl-36514874

Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.


Colitis, Ulcerative , Colitis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/prevention & control , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy
8.
Int J Pharm ; 631: 122505, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36549405

The aim of this study was to develop, characterize and evaluate the in vivo oral efficacy of self-emulsifying drug delivery systems (SEDDS) containing fexinidazole (FEX) in the experimental treatment of visceral leishmaniasis (VL). The developed FEX-SEDDS formulation presented as a clear, yellowish liquid, with absence of precipitate. The droplet size, polydispersion index and zeta potential after dilution in water (1:200) was of 91 ± 3 nm, 0.242 ± 0.005 and -16.7 ± 0.2, respectively. In the simulated gastric and intestinal media, the FEX-SEDDS had a size of 97 ± 1 and 106 ± 9 nm, respectively. The FEX retention in droplet after SEDDS dilution in simulated gastrointestinal media was almost 100 %. Antileishmanial efficacy studies showed that FEX-SEDDS was the only treatment able to significantly (p < 0.05) reduce the parasite burden in the liver and spleen of animals experimentally infected with Leishmania infantum. Our intestinal permeability data suggest that FEX-SEDDS showed no evidence of injury to the intestinal mucosa. These findings suggest that FEX-SEDDS can be a promising oral alternative for the treatment of VL caused by L. infantum.


Antiprotozoal Agents , Nitroimidazoles , Animals , Emulsions , Drug Delivery Systems , Antiprotozoal Agents/pharmacology , Administration, Oral , Solubility , Emulsifying Agents
9.
Nat Prod Res ; 37(5): 759-763, 2023 Mar.
Article En | MEDLINE | ID: mdl-35731024

The increase in the incidence of fungal infections associated with the limited therapeutic arsenal available and the increasing rate of resistance of pathogenic fungi reinforce the need for research of new antifungal agents. Thus, this study aims to evaluate the antifungal activity of the peptide LyeTx I mnΔK, a shortened analogue of the natural peptide LyeTx I derived from spider venom, against Candida species. LyeTx I mnΔK showed potent activity against Candida spp. with minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) between 4 and 32 µM. The peptide also completely inhibited the yeast-to-hypha transition (at 2 µM) and broke mature biofilms (67% reduction at 32 µM) of C. albicans. In addition, LyeTx I mnΔK did not induce resistance in C. albicans during 21 days of exposure. Therefore, the LyeTx I mnΔK is a promising prototype for the development of new antifungal agents.


Antifungal Agents , Venoms , Antifungal Agents/pharmacology , Candida , Candida albicans , Peptides/pharmacology , Microbial Sensitivity Tests , Biofilms
10.
Probiotics Antimicrob Proteins ; 15(2): 338-350, 2023 04.
Article En | MEDLINE | ID: mdl-34524605

Intestinal mucositis (IM) is a common side effect resulting from cancer treatment. However, the management so far has not been very effective. In the last years, the role of the gut microbiota in the development and severity of mucositis has been studied. Therefore, the use of probiotics and paraprobiotics could have a potential therapeutic effect on IM. The aim of our study was to investigate the impact of the administration of Lacticaseibacillus rhamnosus (L. rhamnosus) CGMCC1.3724 and the paraprobiotic on IM in mice. For 13 days, male Balb/c mice were divided into six groups: control (CTL) and mucositis (MUC)/0.1 mL of saline; CTL LrV and MUC LrV/0.1 mL of 108 CFU of viable Lr; CTL LrI and MUC LrI/0.1 mL of 108 CFU of inactivated Lr. On the 10th day, mice from the MUC, MUC LrV, and MUC LrI groups received an intraperitoneal injection (300 mg/kg) of 5-fluorouracil to induce mucositis. The results showed that the administration of the chemotherapeutic agent increased the weight loss and intestinal permeability of the animals in the MUC and MUC LrV groups. However, administration of paraprobiotic reduced weight loss and maintained PI at physiological levels. The paraprobiotic also preserved the villi and intestinal crypts, reduced the inflammatory infiltrate, and increased the mucus secretion, Muc2 gene expression, and Treg cells frequency.


Lacticaseibacillus rhamnosus , Mucositis , Probiotics , Male , Animals , Mice , Mucositis/chemically induced , Mucositis/prevention & control , Mucositis/drug therapy , Lacticaseibacillus , Disease Models, Animal , Probiotics/pharmacology , Intestinal Mucosa , Weight Loss
11.
Toxicol Rep ; 9: 1537-1547, 2022.
Article En | MEDLINE | ID: mdl-36518414

Intestinal mucositis (IM) is a frequent adverse effect in anticancer therapy without standard treatment. The oil obtained from sucupira (Pterodon emarginatus) has anti-inflammatory properties, and the soybean lecithin reduces the intestinal toxicity of several xenobiotics. However, their water insolubility impairs the in vivo application. For this reason, we evaluated if the nanoencapsulation of sucupira oil (SO) in lecithin-based nanocapsules (SO-NC) could be a therapeutically effective system for the treatment of IM in murine cisplatin (CDDP)-induced intestinal mucositis model. SO was analyzed by LC-HRMS/MS and HPLC. SO-NC was prepared by nanoprecipitation and characterized using DLS, HPLC, and AFM. Mice body weight and food consumption were assessed daily during experimental mucositis induced by CDDP. The animals were euthanized, and intestinal permeability, inflammatory mediators, and intestinal histology were performed. SO-NC demonstrated adequate characteristics for oral administration as size under 300 nm, IP < 0.3, high EE, and spherical shape. In vitro cytotoxicity performed against RAW 264.7 cell lines resulted in cell viability above 80 % confirming the non-cytotoxic profile of SO (IC50 268 µg/mL) and SO-NC (IC50 118.5 µg/mL) up to 117.2 µg/mL. The untreated mice showed intestinal toxicity after i.p. of CDDP, principally weight loss, increased intestinal permeability, and MPO and TNF-α levels. Surprisingly, the administration of SO to CDDP-mucositis animals did not circumvent the CDDP effects and increased intestinal permeability. However, SO-NC proved efficient in mitigating the experimental intestinal mucositis by improving intestinal epithelium architecture, reducing intestinal permeability, and improving the MPO levels. In conclusion, SO-NC can positively impact intestinal mucositis by promoting mucosal recovery. This is a promising strategy for developing a new treatment for intestinal mucositis.

12.
Microbiol Res ; 263: 127132, 2022 Oct.
Article En | MEDLINE | ID: mdl-35940106

Intra-abdominal candidiasis (IAC) occurs due to the direct inoculation of Candida into the sterile peritoneal cavity or leakage of the gastrointestinal tract. An important difference between the two forms of the disease is the presence of fecal material, which is exclusive to the latter condition. However, the influence of fecal material on the prognosis of IAC is still poorly understood. Furthermore, methodologies that use the quantification of fungal load by culture methods have low sensitivity, as they do not adequately show the precocity of the infectious process. Here, we developed a new method to evaluate the aspects of the pathophysiology of IAC, mainly the influence of fecal material on the prognosis of infection, by using C. albicans radiolabeled with technetium-99 m (99 mTc). C. albicans was successfully radiolabeled with 99 mTc (18.5 MBq) using dihydrate stannous chloride (100 µM) as a reducing agent. This binding was stable for 72 h. Viability, yeast-to-hyphae transition, morphology, and antifungal susceptibility were not altered by radiolabeling C. albicans with 99 mTc. The biomass and the fungal load of 99 mTc-C. albicans biofilms were reduced compared to the C. albicans non-radiolabeled after 72 h and 48 h of incubation, respectively. In the IAC model, the fungal load in the biodistribution of 99 mTc-C. albicans and culture assays was higher in animals receiving fungal inoculum without fecal material, suggesting that the presence of this component reduces the invasiveness of the pathogen.


Candida albicans , Candidiasis , Animals , Antifungal Agents/metabolism , Candida albicans/metabolism , Candidiasis/diagnostic imaging , Candidiasis/drug therapy , Disease Models, Animal , Mice , Technetium , Tissue Distribution
13.
J Adv Res ; 38: 285-298, 2022 05.
Article En | MEDLINE | ID: mdl-35572397

Introduction: Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure. Objectives: The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties. Methods: The preclinical assessment corresponded to the immunogenicity and dose-response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood-brain-barrier (BBB), modifying its biodistribution was also investigated. Results: Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model. Conclusion: The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.


Calixarenes , Cocaine , Vaccines , Animals , Calixarenes/chemistry , Calixarenes/pharmacology , Haptens , Tissue Distribution
14.
Front Microbiol ; 13: 858036, 2022.
Article En | MEDLINE | ID: mdl-35558121

Intestinal mucositis promoted by the use of anticancer drugs is characterized by ulcerative inflammation of the intestinal mucosa, a debilitating side effect in cancer patients undergoing treatment. Probiotics are a potential therapeutic option to alleviate intestinal mucositis due to their effects on epithelial barrier integrity and anti-inflammatory modulation. This study investigated the health-promoting impact of Lactobacillus delbrueckii CIDCA 133 in modulating inflammatory and epithelial barrier markers to protect the intestinal mucosa from 5-fluorouracil-induced epithelial damage. L. delbrueckii CIDCA 133 consumption ameliorated small intestine shortening, inflammatory cell infiltration, intestinal permeability, villus atrophy, and goblet cell count, improving the intestinal mucosa architecture and its function in treated mice. Upregulation of Muc2, Cldn1, Hp, F11r, and Il10, and downregulation of markers involved in NF-κB signaling pathway activation (Tlr2, Tlr4, Nfkb1, Il6, and Il1b) were observed at the mRNA level. This work suggests a beneficial role of L. delbrueckii strain CIDCA 133 on intestinal damage induced by 5-FU chemotherapy through modulation of inflammatory pathways and improvement of epithelial barrier function.

15.
J Mycol Med ; 32(3): 101255, 2022 Aug.
Article En | MEDLINE | ID: mdl-35219909

Vulvovaginal candidosis (VVC) is one of the most frequent causes of gynecological consultations. Therefore, the development of new antifungal therapies against VVC is relevant. In this context, the leaves of Fridericia chica (Bonpl.) L. G. Lohmann are considered a therapeutic alternative since they are traditionally used in VVC therapy. However, no scientific evidence has supported this use against fungal vaginal infections. Then, we aimed to characterize the antifungal effect of a hydroethanolic extract of F. chica leaves (HEFc) and evaluate the therapeutic potential of this extract in a VVC model. HEFc inhibited the growth of C. albicans (256-1,204 µg/mL) and C. krusei (512 µg/mL) in vitro. HEFc inhibited yeast-to-hypha transition in C. albicans and has a low ability to induce resistance in this species. Intravaginal use of the HEFc at 50 mg/mL causes mycological cure in animals with VVC after 6 days of treatment, similar to the effect observed for the commercial antifungal nystatin. These results support the traditional use of F. chica leaves as a topical therapeutic option to treat VVC.


Antifungal Agents , Candidiasis, Vulvovaginal , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Candida albicans , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Female , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
16.
Nat Prod Res ; 36(24): 6381-6388, 2022 Dec.
Article En | MEDLINE | ID: mdl-35073796

Here, we demonstrated the in vitro and in vivo antibacterial and anti-biofilm activities of melittin, a peptide derived from honeybee venom, against uropathogenic Escherichia coli (UPEC) resistant to quinolones. The minimum inhibitory concentration (MIC) of melittin varied from 0.5 to 8 µM. The bactericidal effect was considered rapid and potent (ranging from 3.0 to 6.0 h after incubation) against a quinolone-resistant and Extended Spectrum Beta-lactamase (ESBL)-producing UPEC strain. Prior exposure to melittin did not reduce the MIC of the quinolones tested, but it decreased the MIC of ceftizoxime by 8-fold due to its ability to form pores in the membrane. Furthermore, melittin disrupted mature biofilms (39.58% at 32 µM) and inhibited the adhesion of this uropathogen to the surfaces of urethral catheter. These results show that melittin is a promising molecule that can be incorporated into invasive urethral medical devices to prevent urinary infections caused by multidrug-resistant UPECs.


Bee Venoms , Quinolones , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Melitten/pharmacology , Quinolones/pharmacology , Bee Venoms/pharmacology , Adhesives , Biofilms , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
17.
Food Res Int ; 151: 110897, 2022 01.
Article En | MEDLINE | ID: mdl-34980418

High-fat diets seem to have a negative influence on the development of obesity and the processes associated with low-grade chronic systemic inflammation. In recent years, partial hydrogenated oil, rich in trans isomers, has been associated with deleterious health effects. It has been replaced by interesterified fat (IF). However, there is no evidence whether IF ingestion can exert adverse effects on the intestinal mucosa. Thus, this study aimed to evaluate the effect of IF on the intestinal mucosa of male Swiss mice fed a normal or high-fat diet, focusing on its effects on intestinal permeability and bacterial translocation and its possible damage to the intestinal epithelium. The animals were divided into 4 groups: Control (C) and Interesterified Control (IC) groups (10 En% lipids from unmodified fat or interesterified fat, respectively) and High Fat (HF) and Interesterified High Fat (IHF) groups (45 En% lipids from unmodified fat or interesterified fat, respectively). Compare to C, the IC, HF, and IHF groups presented flattened epithelium, a shorter villi length and a lower percentage of goblet cells, less mucin 2, an increased oxidative stress and more inflammatory cells, higher IL-1ß, IL-17, and IL-23 levels. These groups also presented increased intestinal permeability and gene expression of the protein claudin 2, while JAM-A and claudin 1 gene expression was reduced. IC and IHF increased IL-6 levels while reducing occludin expression. In addition, the IC group also presented a mucosa with lesions of low intensity in the ileum, an increased mucin 5ac, TNF-α levels, and reduced occludin expression in the distal jejunum. Moreover, there was a significant increase in bacterial translocation in the IC group to blood, liver, and lungs, while HF and IHF groups presented bacterial translocation which was restricted to the mesenteric lymph nodes. In summary, our results supported the hypothesis that IF added to a normolipidic diet can be considered harmful or even worse when compared to a HF.


Bacterial Translocation , Fatty Acids , Animals , Diet, High-Fat/adverse effects , Gene Expression , Male , Mice , Palm Oil , Permeability , Tight Junction Proteins/genetics
18.
Biomed Pharmacother ; 145: 112414, 2022 Jan.
Article En | MEDLINE | ID: mdl-34808552

Inflammatory bowel diseases, irritable bowel syndrome, and mucositis are characterized by intestinal inflammation, but vary according to their pathological mechanisms, severity, location, and etiology. Significant intestinal inflammation that occurs in these diseases induces weight loss, nutritional depletion, and gastrointestinal tract dysfunction. Nutritional support is important in alleviating symptoms and improving patients' quality of life. In this review, we summarize some nutritional components used to manage intestinal disorders. These include fatty acids, probiotics, parabiotics, postbiotics, prebiotics, synbiotics, and low FODMAP (LFD) diets. These components and LFD diets have been studied and clinical trials have been designed to develop new strategies to alleviate intestinal inflammation and improve the quality of life. Clinical trials on their use in intestinal inflammation do not allow firm conclusions to be drawn mainly because of the heterogeneity of the dose used and the study design or their inconclusive results. However, in the majority of cases, the use of omega-3, probiotics, parabiotics, postbiotics, prebiotics, synbiotics, and LFD improve the health.


Dietary Supplements , Inflammation/therapy , Intestinal Diseases/therapy , Animals , Humans , Inflammation/physiopathology , Inflammatory Bowel Diseases/physiopathology , Inflammatory Bowel Diseases/therapy , Intestinal Diseases/physiopathology , Irritable Bowel Syndrome/physiopathology , Irritable Bowel Syndrome/therapy , Mucositis/physiopathology , Mucositis/therapy , Nutritional Support/methods , Quality of Life
19.
J Pharm Pharmacol ; 74(5): 711-717, 2022 May 20.
Article En | MEDLINE | ID: mdl-34791381

OBJECTIVES: To circumvent cisplatin (CDDP) toxic effects and improve the antitumoural effect, our research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). This study aimed to evaluate whether SpHL-CDDP is associated with intestinal protection under in-vitro conditions in the presence of host-microbiota, compared with free CDDP. METHODS: The cytotoxicity of CDDP and SpHL-CDDP were evaluated by colorimetric MTT and sulforhodamine B (SRB) assays. Epithelial proliferation was assessed by using an in-vitro wounding model in the presence of host-microbiota with intestinal epithelial cell line 6 (IEC-6) monolayers. Cytokines were determined by ELISA. KEY FINDINGS: Reduced cytotoxicity of SpHL-CDDP in IEC-6 cells (minimum of 1.3-fold according to the IC50 values) was observed when compared with CDDP. The presence of microbiota or CDDP reduced the wound healing. The association of microbiota and SpHL-CDDP improved the wound healing and cell number in IEC-6 cells when compared with control. These beneficial results can be associated with increased IL-6 and IL-10 levels induced by SpHL-CDDP which were affected by the presence of microbiota. CONCLUSIONS: These results indicate that the presence of microbiota associated with SpHL-CDDP provided less intestinal cellular damages compared with CDDP and constitutes a promising candidate for clinical use.


Antineoplastic Agents , Microbiota , Antineoplastic Agents/pharmacology , Cell Count , Cell Line, Tumor , Cisplatin/pharmacology , Epithelial Cells , Hydrogen-Ion Concentration , Liposomes , Wound Healing
20.
J Antibiot (Tokyo) ; 74(7): 425-434, 2021 07.
Article En | MEDLINE | ID: mdl-33972716

The emergence of antibiotic-resistant bacteria, especially carbapenem-resistant Acinetobacter baumannii (CRAB), together with relative stagnation in the development of effective antibiotics, has led to enormous health and economic problems. In this study, we aimed to describe the antibacterial spectrum of LyeTx I mnΔK, a short synthetic peptide based on LyeTx I from Lycosa erythrognatha venom, against CRAB. LyeTx I mnΔK showed considerable antibacterial activity against extensively resistant A. baumannii, with minimum inhibitory and bactericidal concentrations ranging from 1 to 16 µM and 2 to 32 µM, respectively. This peptide significantly increased the release of 260 nm-absorbing intracellular material from CRAB, suggesting bacteriolysis. LyeTx I mnΔK was shown to act synergistically with meropenem and colistin against CRAB. The cytotoxic concentration of LyeTx I mnΔK against Vero cells (CC50 = 55.31 ± 5.00 µM) and its hemolytic activity (HC50 = 77.07 ± 4.00 µM) were considerably low; however, its antibacterial activity was significantly reduced in the presence of human and animal serum and trypsin. Nevertheless, the inhalation of this peptide was effective in reducing pulmonary bacterial load in a mouse model of CRAB infection. Altogether, these results demonstrate that the peptide LyeTx I mnΔK is a potential prototype for the development of new effective and safe antibacterial agents against CRAB.


Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Peptides/pharmacology , Pneumonia, Bacterial/drug therapy , Spider Venoms/chemistry , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Carbapenems/pharmacology , Chlorocebus aethiops , Drug Resistance, Bacterial/drug effects , Drug Stability , Drug Synergism , Female , Humans , Mice, Inbred BALB C , Microbial Sensitivity Tests , Peptides/chemistry , Pneumonia, Bacterial/microbiology , Vero Cells
...