Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Anal Methods ; 14(47): 4967-4976, 2022 12 08.
Article En | MEDLINE | ID: mdl-36441195

In water treatment plants (WTPs), chemical agents, such as chlorine and ozone, might react with organic matter and anthropogenic contaminants, forming a high diversity of disinfection by-products (DBPs). Due to the potential toxicological effects, the identification of unregulated DBPs (UR-DBPs) is critical to help water managers in the selection of effective water treatment processes, contributing to improving water safety plans. Given the limited validated analytical methods to detect UR-DBPs, here we developed new multi-residue gas chromatography coupled with mass spectrometry methodologies for the detection and quantification of 15 UR-DBPs, including aldehydes, haloketones (HKs), nitrosamines and alcohols, in drinking water matrices. Solid-phase extraction (SPE), for the nitrosamine group, and solid-phase micro extraction (SPME), for the remaining DBPs, were used as sample preparation methods. The developed methodologies allowed the quantification of target UR-DBPs at trace concentration levels (ng L-1), with method quantification limits (MQLs) ranging from 14.4 ng L-1 to 26.0 ng L-1 (SPE-GC-MS) and 2.3 ng L-1 and 1596 ng L-1 (SPME-GC-MS). The methods were applied to different drinking water matrices, considering distinct delivery points of EPAL - Empresa Portuguesa das Águas Livres WTPs. Overall, the aldehyde group, represented by decanal, nonanal and 2-ethylheaxanal, showed the highest occurrence, followed by HKs and nitrosamines. The results of this study suggested that the formation of these UR-DBPs should be further monitored in WTPs.


Drinking Water , Water Purification , Chromatography, Gas , Mass Spectrometry
2.
Sci Total Environ ; 800: 149473, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34392214

Wildfire effects go beyond direct impact in terrestrial ecosystems. Specifically, the periphytic communities of aquatic ecosystems standing within and downstream the burnt areas are relevant ecological receptors of post-fire runoff contamination. Nevertheless, the off-site impacts of wildfires in these communities are limitedly studied so far. The present study aimed to assess the effects of river water contaminated with ash-loaded runoff in the growth benthic diatom Navicula libonensis (Schoeman 1970). Four surface water samples were collected approximately one year after the wildfire for laboratory testing with the diatom: one was collected from a site upstream the burnt area, within the Unhais river (UU); three were collected from sites standing within the burnt area, one in the Unhais river (UB) and two in the Zêzere river (Z1 and Z2), reflecting different hydrological regimes. N. libonensis was proven able to discriminate among river sites affected and unaffected by wildfire runoff, reflecting, in general, the expected trends considering the physico-chemical characterization of the water samples. The water samples from the sites standing within the burnt area inhibited the biomass yield and growth rate of the tested diatom, ranking the samples regarding toxicity as follows: Z1 > UB > Z2 > UU. However, UB rather than Z1 presented the highest contaminant burden, namely metal elements, and some were found above widely accepted safety benchmarks (polycyclic aromatic hydrocarbons were not detected). This inconsistency can be linked to unknown interactions among metals within each water sample, to differential nutrient enrichment of samples, as well as hydrological factors. Overall, our results suggest that monospecific laboratory assays with sensitive diatoms can be valuable as cost-effective screening tools to prioritize sites affected by wildfires runoff requiring in-depth monitoring of negative effects in benthic producer communities.


Diatoms , Water Pollutants, Chemical , Wildfires , Ecosystem , Environmental Monitoring , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Sci Total Environ ; 742: 140522, 2020 Nov 10.
Article En | MEDLINE | ID: mdl-32623170

Disinfection By-products (DBPs) are formed during the chemical treatment of water for human consumption, by the reaction of raw water with chemical agents used in the different steps of the process. Disinfection is one of the most important steps, inactivating pathogens and preventing their regrowth during water distribution. However, it is also involved in DBPs formation due to the use of disinfectant agents, such as chlorine, which reacts with dissolved precursors, such as pharmaceuticals, toxins, pesticides, among others. Given their widespread occurrence, potential human health and (eco) toxicological impacts are of particular interest due to their potential carcinogenicity and various non-carcinogenic effects, such as endocrine disruption. In this study, the developmental toxicity of chemically- different unregulated DBPs was evaluated using zebrafish embryo bioassay. Embryos were exposed to different concentrations of the target DBPs and multiple endpoints, including, mortality, morphological abnormalities and locomotor behavior were assessed at specific developmental stages (24, 48, 72 and 96 hpf). The different families of DBPs tested included nitrosamines, aldehydes, alcohols and ketones. The results show that the effects were compound dependent, with EC10 values varying between 0.04 mg/L (2-ethyl-1-hexanal) to 9.2 mg/L (hexachloroacetone). Globally, several of the tested unregulated DBPs displayed higher toxicity when compared with the available data for some already regulated, such as trihalomethanes (THMs), which highlights the importance of screening the toxicity of still untested and poorly characterized DBPs.


Disinfectants/analysis , Drinking Water , Water Pollutants, Chemical/analysis , Water Purification , Animals , Biological Assay , Disinfection , Humans , Trihalomethanes , Zebrafish
4.
Article En | MEDLINE | ID: mdl-31136853

Disinfection of water system is an essential strategy to protect human health from pathogens and prevent their regrowth during water distribution, but the reaction of disinfectant agents with organic matter can lead to the formation of disinfection by-products (DBPs). Given their widespread occurrence, potential human health impacts and (eco)toxicity associated with exposure to DBPs are of particular interest due to their potential carcinogenicity and vary non-carcinogenic effects, such as endocrine disruption. Understanding the public health implications of this emerging issue is crucial for societies and decision-makers, supporting more effective water safety plans. Here, we review the recent literature on the effects of DBPs presented in drinking water and treated swimming pools water, focusing particularly in unregulated compounds and the putative underlying mode of action, linking the available data with adverse health outcomes. Overall, the majority of studies highlight the limited knowledge in the understanding of the underlying mode of action of DBPs. Yet, available evidences indicate that different signaling pathways seem to be involved in the adverse outcomes associated with distinct DBPs classes. The main knowledge gaps in this field are also identified, and future research priorities discussed.


Disinfectants/toxicity , Disinfection/methods , Water Purification/methods , Animals , Disinfectants/chemistry , Humans , Risk Assessment , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
5.
Environ Sci Pollut Res Int ; 23(11): 11279-11288, 2016 Jun.
Article En | MEDLINE | ID: mdl-26924700

A sequential water treatment combining low pressure ultraviolet direct photolysis with nanofiltration was evaluated to remove hormones from water, reduce endocrine disrupting activity, and overcome the drawbacks associated with the individual processes (production of a nanofiltration-concentrated retentate and formation of toxic by-products). 17ß-Estradiol, 17α-ethinylestradiol, estrone, estriol, and progesterone were spiked into a real water sample collected after the sedimentation process of a drinking water treatment plant. Even though the nanofiltration process alone showed similar results to the combined treatment in terms of the water quality produced, the combined treatment offered advantage in terms of the load of the retentate and decrease in the endocrine-disrupting activity of the samples. Moreover, the photolysis by-products produced, with higher endocrine disrupting activity than the parent compounds, were effectively retained by the membrane. The combination of direct LP/UV photolysis with nanofiltration is promising for a drinking water utility that needs to cope with sudden punctual discharges or deterioration of the water quality and wants to decrease the levels of chemicals in the nanofiltration retentate.


Drinking Water/analysis , Endocrine Disruptors/analysis , Filtration , Hormones/analysis , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods , Drinking Water/standards , Endocrine Disruptors/radiation effects , Hormones/radiation effects , Photolysis , Water Pollutants, Chemical/radiation effects , Water Quality
...