Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
PLoS Negl Trop Dis ; 17(12): e0011274, 2023 Dec.
Article En | MEDLINE | ID: mdl-38064489

Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining Plasmodium species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/µL (95% CI 0.4-1.6) for Poc and 4.5 plasmid copies/µL (95% CI 2.7-18) for Pow, or 0.1 and 0.8 parasites/µL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/µL (roughly 200 parasites/µL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 100 copies/µL (<1 parasite/µL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR in 19 samples, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovale-infected persons, mixed Poc/Pow infections were detected in 11/14 (79%). Based on these results, 8/9 P. ovale carriers transmitted both P. ovale species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated.


Anopheles , Malaria , Plasmodium ovale , Animals , Humans , Real-Time Polymerase Chain Reaction/methods , Plasmodium ovale/genetics , RNA, Ribosomal, 18S/genetics , Nucleic Acid Amplification Techniques , Anopheles/genetics , Malaria/diagnosis , Malaria/epidemiology
2.
Med Sci Educ ; 33(3): 659-667, 2023 Jun.
Article En | MEDLINE | ID: mdl-37501800

Purpose: This paper aims to characterize the use of demographic data in multiple-choice questions from a commercial preclinical question bank and determine if there is appropriate use of different distractors. Background: Multiple-choice questions for medical students often include vignettes describing a patient's presentation to help guide students to a diagnosis, but overall patterns of usage between different types of nonmedical patient information in question stems have yet to be determined. Methods: Three hundred eighty of 453 randomly selected questions were included for analysis after determining they contained a clinical vignette and required a diagnosis. The vignettes and following explanations were then examined for the presence/absence of 11 types of demographic information, including age, sex/gender, and socioeconomic status. We compared both the usage frequency and relevance between the 11 information types. Results: Most information types were present in less than 10% of clinical vignettes, but age and sex/gender were present in over 95% of question stems. Over 50% of questions included irrelevant information about age and sex/gender, but 75% of questions did not include any irrelevant information of other types. Patient weight and environmental exposures were significantly more likely to be relevant than age or sex/gender. Discussion: Students using the questions in this study will frequently gain practice incorporating age and sex/gender into their clinical reasoning while receiving little exposure to other demographic information. Based on our findings, we posit that questions could include more irrelevant information, outside age and sex/gender, to better approximate real clinical scenarios and ensure students do not overvalue certain demographic data. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-023-01778-z.

3.
bioRxiv ; 2023 Mar 31.
Article En | MEDLINE | ID: mdl-37034766

Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining malaria species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/µL (95% CI 0.4-1.6) for Poc and 4.5 plasmid copies/µL (95% CI( 2.7- 18) for Pow, or 0.1 and 0.8 parasites/µL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/µL (roughly 200 parasites/µL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 10° copies/µL (<1 parasite/µL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to 14 oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovate-infected persons, mixed Poc/Pow infections were detected in 11 (79%). Based on these results, 8/9 P. ovate carriers transmitted both P. ovate species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated.

4.
PLoS Negl Trop Dis ; 16(7): e0010648, 2022 07.
Article En | MEDLINE | ID: mdl-35867730

Genotyping Plasmodium vivax relapses can provide insights into hypnozoite biology. We performed targeted amplicon sequencing of 127 relapses occurring in Indonesian soldiers returning to malaria-free Java after yearlong deployment in malarious Eastern Indonesia. Hepatic carriage of multiple hypnozoite clones was evident in three-quarters of soldiers with two successive relapses, yet the majority of relapse episodes only displayed one clonal population. The number of clones detected in relapse episodes decreased over time and through successive relapses, especially in individuals who received hypnozoiticidal therapy. Interrogating the multiplicity of infection in this P. vivax relapse cohort reveals evidence of independent activation and slow depletion of hypnozoites over many months by multiple possible mechanisms, including parasite senescence and host immunity.


Antimalarials , Malaria, Vivax , Malaria , Parasites , Animals , Antimalarials/therapeutic use , Humans , Malaria/parasitology , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Recurrence
5.
Gut Microbes ; 13(1): 1874815, 2021.
Article En | MEDLINE | ID: mdl-33567985

Mucus-associated bacterial communities are critical for determining disease pathology and promoting colonization resistance. Yet the key ecological properties of mucus resident communities remain poorly defined. Using an approach that combines in situ hybridization, laser microdissection and 16s rRNA sequencing of spatially distinct regions of the mouse gut lumen, we discovered that a dense microbial community resembling a biofilm is embedded in the mucus layer. The mucus-associated biofilm-like community excluded bacteria belonging to phylum Proteobacteria. Additionally, it was significantly more diverse and consisted of bacterial species that were unique to it. By employing germ-free mice deficient in T and B lymphocytes we found that formation of biofilm-like structure was independent of adaptive immunity. Instead the integrity of biofilm-like community depended on Gram-positive commensals such as Clostridia. Additionally, biofilm-like community in the mucus lost fewer Clostridia and showed smaller bloom of Proteobacteria compared to the lumen upon antibiotic treatment. When subjected to time-restricted feeding biofilm-like structure significantly enhanced in size and showed enrichment of Clostridia. Taken together our work discloses that mucus-associated biofilm-like community represents a specialized community that is structurally and compositionally distinct that excludes aerobic bacteria while enriching for anaerobic bacteria such as Clostridia, exhibits enhanced stability to antibiotic treatment and that can be modulated by dietary changes.


Bacteria/isolation & purification , Gastrointestinal Microbiome , Mucus/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Biofilms , DNA, Bacterial/genetics , Ecosystem , Female , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Spatial Analysis
6.
Cell ; 179(5): 1191-1206.e21, 2019 11 14.
Article En | MEDLINE | ID: mdl-31730857

This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.


B-Lymphocytes/immunology , Immunotherapy , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/immunology , Mutation/genetics , T-Lymphocytes, Helper-Inducer/immunology , Animals , CTLA-4 Antigen/metabolism , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Genetic Engineering , Genome , Humans , Immunoglobulin G/metabolism , Lymphocyte Activation/immunology , Mammary Neoplasms, Animal/therapy , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/therapy
7.
J Infect Dis ; 216(1): 36-44, 2017 07 01.
Article En | MEDLINE | ID: mdl-28177502

Background: Rapid diagnostic tests (RDTs) account for more than two-thirds of malaria diagnoses in Africa. Deletions of the Plasmodium falciparum hrp2 (pfhrp2) gene cause false-negative RDT results and have never been investigated on a national level. Spread of pfhrp2-deleted P. falciparum mutants, resistant to detection by HRP2-based RDTs, would represent a serious threat to malaria elimination efforts. Methods: Using a nationally representative cross-sectional study of 7,137 children under five years of age from the Democratic Republic of Congo (DRC), we tested 783 subjects with RDT-/PCR+ results using PCR assays to detect and confirm deletions of the pfhrp2 gene. Spatial and population genetic analyses were employed to examine the distribution and evolution of these parasites. Results: We identified 149 pfhrp2-deleted parasites, representing 6.4% of all P. falciparum infections country-wide (95% confidence interval 5.1-8.0%). Bayesian spatial analyses identified statistically significant clustering of pfhrp2 deletions near Kinshasa and Kivu. Population genetic analysis revealed significant genetic differentiation between wild-type and pfhrp2-deleted parasite populations (GST = .046, p ≤ .00001). Conclusions: Pfhrp2-deleted P. falciparum is a common cause of RDT-/PCR+ malaria among asymptomatic children in the DRC and appears to be clustered within select communities. Surveillance for these deletions is needed, and alternatives to HRP2-specific RDTs may be necessary.


Antigens, Protozoan/genetics , Gene Deletion , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Bayes Theorem , Child, Preschool , Cross-Sectional Studies , DNA, Protozoan/isolation & purification , Democratic Republic of the Congo , Diagnostic Tests, Routine , Humans , Malaria, Falciparum/diagnosis , Microsatellite Repeats , Prevalence
...