Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
DNA Repair (Amst) ; 81: 102646, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31522911

RESUMEN

DNA double-strand breaks (DSBs) are particularly challenging to repair in pericentromeric heterochromatin because of the increased risk of aberrant recombination in highly repetitive sequences. Recent studies have identified specialized mechanisms enabling 'safe' homologous recombination (HR) repair in heterochromatin. These include striking nuclear actin filaments (F-actin) and myosins that drive the directed motion of repair sites to the nuclear periphery for 'safe' repair. Here, we summarize our current understanding of the mechanisms involved, and propose how they might operate in the context of a phase-separated environment.


Asunto(s)
Actinas/metabolismo , Roturas del ADN de Doble Cadena , Heterocromatina/metabolismo , Reparación del ADN por Recombinación , Animales , Núcleo Celular/metabolismo , ADN/metabolismo , Eucariontes , Humanos
2.
Nature ; 559(7712): 54-60, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29925946

RESUMEN

Heterochromatin mainly comprises repeated DNA sequences that are prone to ectopic recombination. In Drosophila cells, 'safe' repair of heterochromatic double-strand breaks by homologous recombination relies on the relocalization of repair sites to the nuclear periphery before strand invasion. The mechanisms responsible for this movement were unknown. Here we show that relocalization occurs by directed motion along nuclear actin filaments assembled at repair sites by the Arp2/3 complex. Relocalization requires nuclear myosins associated with the heterochromatin repair complex Smc5/6 and the myosin activator Unc45, which is recruited to repair sites by Smc5/6. ARP2/3, actin nucleation and myosins also relocalize heterochromatic double-strand breaks in mouse cells. Defects in this pathway result in impaired heterochromatin repair and chromosome rearrangements. These findings identify de novo nuclear actin filaments and myosins as effectors of chromatin dynamics for heterochromatin repair and stability in multicellular eukaryotes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Heterocromatina/metabolismo , Movimiento , Miosinas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Heterocromatina/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Chaperonas Moleculares , Reparación del ADN por Recombinación
3.
Methods Enzymol ; 601: 359-389, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29523239

RESUMEN

Heterochromatin is mostly composed of long stretches of repeated DNA sequences prone to ectopic recombination during double-strand break (DSB) repair. In Drosophila, "safe" homologous recombination (HR) repair of heterochromatic DSBs relies on a striking relocalization of repair sites to the nuclear periphery. Central to understanding heterochromatin repair is the ability to investigate the 4D dynamics (movement in space and time) of repair sites. A specific challenge of these studies is preventing phototoxicity and photobleaching effects while imaging the sample over long periods of time, and with sufficient time points and Z-stacks to track repair foci over time. Here we describe an optimized approach for high-resolution live imaging of heterochromatic DSBs in Drosophila cells, with a specific emphasis on the fluorescent markers and imaging setup used to capture the motion of repair foci over long-time periods. We detail approaches that minimize photobleaching and phototoxicity with a DeltaVision widefield deconvolution microscope, and image processing techniques for signal recovery postimaging using SoftWorX and Imaris software. We present a method to derive mean square displacement curves revealing some of the biophysical properties of the motion. Finally, we describe a method in R to identify tracts of directed motions (DMs) in mixed trajectories. These approaches enable a deeper understanding of the mechanisms of heterochromatin dynamics and genome stability in the three-dimensional context of the nucleus and have broad applicability in the field of nuclear dynamics.


Asunto(s)
Drosophila/genética , Heterocromatina/metabolismo , Microscopía Fluorescente/métodos , Reparación del ADN por Recombinación , Programas Informáticos , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Drosophila/metabolismo , Heterocromatina/genética , Imagenología Tridimensional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA