Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 21(11): 4479-4491, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32551526

RESUMEN

The combination of cellulose nanocrystals (CNCs) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) was evaluated to synthesize stable latexes by surfactant-free emulsion polymerization of methyl methacrylate (MMA). Cellulose-particle interaction was provided due to the dual role of PEGMA, acting as water-soluble comonomer with MMA under emulsion polymerization conditions and able to interact with CNCs, recovered from sulfuric acid hydrolysis (H2SO4-CNCs). After preliminary experiments designed to validate the affinity between CNCs and PEG-stabilized PMMA particles obtained by MMA/PEGMA emulsion copolymerization, the effect of the PEGMA content and molar mass and also of the content of CNCs on the kinetics of the polymerization and the stability of the latexes were investigated. The use of PEGMA300 (Mn = 300 g mol-1, 2-10 wt %) allowed the formation of a stable latex, however, with a broad particle size distribution and the presence of both small (ca. 25-50 nm) and large (ca. 425-650 nm) particles (at 10 wt %, Dn = 278 nm and Dw/Dn = 1.34). Increasing the molar mass of PEGMA (PEGMA950 or PEGMA2080) significantly increased the fraction of small particles. This was explained by the nucleation and growth of small polymer particles adsorbed at the CNCs' surface, resulting in a particular organization where the CNCs were covered by several polymer particles. The influence of the initial amount of CNCs in these systems was finally evidenced, the polymerization being faster as the content of CNCs increased, but only the latexes prepared with 2 and 5 wt % of CNCs were stable.


Asunto(s)
Nanopartículas , Tensoactivos , Celulosa , Emulsiones , Látex , Polimerizacion , Polimetil Metacrilato , Agua
2.
Biomacromolecules ; 20(7): 2545-2556, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31244017

RESUMEN

This study investigates the adsorption of a block copolymer composed of a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyelectrolyte and a poly(di(ethylene glycol) methyl ethermethacrylate) (PDEGMA) on oxidized cellulose nanocrystals (TO-CNCs) to produce hydrogels. PDMEAMA- b-PDEGMA was synthesized by atom-transfer radical polymerization. The extent and dynamics of the adsorption of PDMAEMA- b-PDEGMA on TO-CNCs were determined by electromechanical microbalance and optical techniques. Electrostatic adsorption was identified on TO-CNCs with the quaternized block copolymer. Small-angle neutron scattering experiments were performed to investigate the polymer behavior on the TO-CNC surfaces. Depending on the temperature, block copolymer induces the aggregation of nanocrystals after adsorption by connecting CNCs bundles with block copolymer chains. A reversible liquid-to-gel transition, triggered by temperature, was clearly detected by rheological measurements for the copolymer-CNC mixtures. At the optimal copolymer to CNC ratio the viscosity increased by 4 orders of magnitude at low shear rates. These stimuli-responsive CNC-based materials could be used as injectable biomedical systems.


Asunto(s)
Celulosa/química , Hidrogeles/química , Nanopartículas/química , Reología , Adsorción , Metacrilatos/química , Nylons/química
3.
Nat Nanotechnol ; 14(7): 640-641, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31110267
4.
Carbohydr Polym ; 181: 871-878, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29254048

RESUMEN

EDC-mediated coupling has frequently been utilized to poly(ethylene glycol) functionalize (PEGylate) cellulose-based materials, but no work has previously been reported on the direct N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC)-mediated PEGylation of cellulose nanofibrils (CNF). Herein, we report the first study where CNF has been directly sterically stabilized with amine-terminated PEG employing N-hydroxysuccinimide (NHS)-assisted EDC-coupling. This work has shown that this coupling reaction is highly sensitive to the reaction conditions and purification procedures, and hence an optimized coupling protocol was developed in order to achieve a reaction yield. Elemental analysis of the nitrogen content also showed the successful PEGylation. It was also shown that a surprisingly low PEGylation (1%) is sufficient to significantly improve the colloidal stability of the PEGylated samples, which reached dispersion-arrested-state-transitions at higher concentrations than neat CNF. The colloidal stability was preserved with increasing ionic strength, when comparably long polymer chains were grafted, targeting only 1% PEGylation.

5.
ACS Appl Mater Interfaces ; 9(40): 35305-35318, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28895728

RESUMEN

In the present work, cellulose nanocrystals (CNCs) have been surface-modified either via covalent grafting or through physisorption of poly(n-butyl methacrylate) (PBMA) and employed as reinforcement in PCL. Covalent grafting was achieved by surface-initiated atom transfer radical polymerization (SI-ATRP). Two approaches were utilized for the physisorption: using either micelles of poly(dimethyl aminoethyl methacrylate)-block-poly(n-butyl methacrylate) (PDMAEMA-b-PBMA) or latex nanoparticles of poly(dimethyl aminoethyl methacrylate-co-methacrylic acid)-block-poly(n-butyl methacrylate) (P(DMAEMA-co-MAA)-b-PBMA). Block copolymers (PDMAEMA-b-PBMA)s were obtained by ATRP and subsequently micellized. Latex nanoparticles were produced via reversible addition-fragmentation chain-transfer (RAFT) mediated surfactant-free emulsion polymerization, employing polymer-induced self-assembly (PISA) for the particle formation. For a reliable comparison, the amounts of micelles/latex particles adsorbed and the amount of polymer grafted onto the CNCs were kept similar. Two different chain lengths of PBMA were targeted, below and above the critical molecular weight for chain entanglement of PBMA (Mn,c ∼ 56 000 g mol-1). Poly(ε-caprolactone) (PCL) nanocomposites reinforced with unmodified and modified CNCs in different weight percentages (0.5, 1, and 3 wt %) were prepared via melt extrusion. The resulting composites were evaluated by UV-vis, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and tensile testing. All materials resulted in higher transparency, greater thermal stability, and stronger mechanical properties than unfilled PCL and nanocomposites containing unmodified CNCs. The degradation temperature of PCL reinforced with grafted CNCs was higher than that of micelle-modified CNCs, and the latter was higher than that of latex-adsorbed CNCs with a long PBMA chain length. The results clearly indicate that covalent grafting is superior to physisorption with regard to thermal and mechanical properties of the final nanocomposite. This unique study is of great value for the future design of CNC-based nanocomposites with tailored properties.

6.
Macromol Rapid Commun ; 38(16)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28691386

RESUMEN

Field-grading materials (FGMs) are used to reduce the probability for electrical breakdowns in critical regions of electrical components and are therefore of great importance. Usually, FGMs are heavily filled (40 vol.%) with semi-conducting or conducting particles. Here, polymer-grafted reduced graphene oxide (rGO) is used as a filler to accomplish percolated networks at very low filling ratios (<2 vol.%) in a semi-crystalline polymer matrix: poly(ethylene-co-butyl acrylate) (EBA). Various simulation models are used to predict the percolation threshold and the flake-to-flake distances, to complement the experimental results. A substantial increase in thermal stability of rGO is observed after surface modification, either by silanization or subsequent polymerizations. The non-linear DC resistivity of neat and silanized rGO and its trapping of charge-carriers in semi-crystalline EBA are demonstrated for the first time. It is shown that the polymer-grafted rGO improve the dispersibility in the EBA-matrix and that the graft length controls the inter-flake distances (i.e. charge-carrier hopping distances). By the appropriate selection of graft lengths, both highly resistive materials at 10 kV mm-1 and FGMs with a large and distinct drop in resistivity (six decades) are obtained, followed by saturation. The nonlinear drop in resistivity is attributed to narrow inter-flake distance distributions of grafted rGO.


Asunto(s)
Electroquímica , Grafito/química , Óxidos/química , Simulación por Computador , Polietileno/química , Polímeros/química
7.
Carbohydr Polym ; 157: 1033-1040, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-27987803

RESUMEN

In this work we describe the grafting of cellulose nanocrystals (CNCs) by surface-initiated photoinduced Cu-mediated reversible-deactivation radical polymerization (RDRP). Initially, CNCs obtained through sulfuric acid hydrolysis were functionalized with a tertiary bromo-ester moiety as an initiating group for the subsequent RDRP of methyl acrylate, targeting three different degrees of polymerization for the polymer grafts: 50, 300 and 600. The polymerizations proceeded in DMSO in the presence of CuBr2 and Me6TREN as the catalytic system utilizing a UV source (λmax≈360nm). The technique proved highly versatile for the modification of CNCs with poly(methyl acrylate), where considerably high grafting was achieved in short reaction times (90min), with simple purification steps. CNC morphology was maintained and polymer grafts were evident through FT-IR spectroscopy, thermal analysis, contact angle measurements, X-ray photoelectron microscopy and x-ray diffraction.

8.
Nanoscale ; 8(42): 18204-18211, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27752695

RESUMEN

In this study the wet adhesion between Layer-by-Layer (LbL) assembled films of triblock copolymer micelles was investigated. Through the LbL assembly of triblock copolymer micelles with hydrophobic, low glass transition temperature (Tg) middle blocks and ionic outer blocks, a network of energy dissipating polymer chains with electrostatic interactions serving as crosslinks can be built. Four triblock copolymers were synthesized through Atom Transfer Radical Polymerisation (ATRP). One pair had a poly(2-ethyl-hexyl methacrylate) middle block with cationic or anionic outer blocks. The other pair contained the same ionic outer blocks but poly(n-butyl methacrylate) as the middle block. The wet adhesion was evaluated with colloidal probe AFM. To our knowledge, wet adhesion of the magnitude measured in this study has not previously been measured on any polymer system with this technique. We are convinced that this type of block copolymer system grants the ability to control the geometry and adhesive strength in a number of nano- and macroscale applications.

9.
Nanoscale ; 8(27): 13522, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27353546

RESUMEN

Correction for 'Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states' by Martin Wåhlander, et al., Nanoscale, 2016, DOI: 10.1039/c6nr01502f.

10.
Nanoscale ; 8(31): 14730-45, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27230294

RESUMEN

We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.

11.
Biomacromolecules ; 17(4): 1414-24, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26913868

RESUMEN

Herein, we report a novel class of latex particles composed of a hemicellulose, xyloglucan (XG), and poly(methyl methacrylate) (PMMA), specially designed to enable a biomimetic modification of cellulose. The formation of the latex particles was achieved utilizing reversible addition-fragmentation chain transfer (RAFT) mediated surfactant-free emulsion polymerization employing XG as a hydrophilic macromolecular RAFT agent (macroRAFT). In an initial step, XG was functionalized at the reducing chain end to bear a dithioester. This XG macroRAFT was subsequently utilized in water and chain extended with methyl methacrylate (MMA) as hydrophobic monomer, inspired by a polymerization-induced self-assembly (PISA) process. This yielded latex nanoparticles with a hydrophobic PMMA core stabilized by the hydrophilic XG chains at the corona. The molar mass of PMMA targeted was varied, resulting in a series of stable latex particles with hydrophobic PMMA content between 22 and 68 wt % of the total solids content (5-10%). The XG-PMMA nanoparticles were subsequently adsorbed to a neutral cellulose substrate (filter paper), and the modified surfaces were analyzed by FT-IR and SEM analyses. The adsorption of the latex particles was also investigated by quartz crystal microbalance with dissipation monitoring (QCM-D), where the nanoparticles were adsorbed to negatively charged model cellulose surfaces. The surfaces were analyzed by atomic force microscopy (AFM) and contact angle (CA) measurements. QCM-D experiments showed that more mass was adsorbed to the surfaces with increasing molar mass of the PMMA present. AFM of the surfaces after adsorption showed discrete particles, which were no longer present after annealing (160 °C, 1 h) and the roughness (Rq) of the surfaces had also decreased by at least half. Interestingly, after annealing, the surfaces did not all become more hydrophobic, as monitored by CA measurements, indicating that the surface roughness was an important factor to consider when evaluating the surface properties following particle adsorption. This novel class of latex nanoparticles provides an excellent platform for cellulose modification via physical adsorption. The utilization of XG as the anchoring molecule to cellulose provides a versatile methodology, as it does not rely on electrostatic interactions for the physical adsorption, enabling a wide range of cellulose substrates to be modified, including neutral sources such as cotton and bacterial nanocellulose, leading to new and advanced materials.


Asunto(s)
Materiales Biocompatibles/química , Celulosa/química , Glucanos/química , Microesferas , Polimetil Metacrilato/química , Polisacáridos/química , Xilanos/química , Adsorción , Biomimética , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Nanopartículas/química , Polimerizacion , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
12.
ACS Macro Lett ; 5(1): 139-143, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35668588

RESUMEN

A facile light-induced procedure for the covalent cross-linking of cellulose at ambient conditions employing the nitrile imine mediated tetrazole-ene cycloaddition (NITEC) reaction is presented. Cellulose-tetrazoles with 2 degrees of substitution (0.14 and 0.23) were synthesized in a solution-based transesterification procedure in an ionic liquid. Two bismaleimides with either a trioxatridecane or a dithiodipropionyl backbone were used as cross-linkers to form fluorescent, covalently cross-linked cellulose networks and films, which were characterized by UV/vis spectroscopy, fluorescence spectroscopy, DSC, and TGA. The films showed a broad emission band from 500-700 nm and were thermally stable up to 200 °C. Using the bismaleimide with a disulfide moiety as the cross-linker, reductive degradation of the films can be induced. Finally, cellulose-tetrazole was cross-linked in a spatially resolved fashion, providing a strategy for the shaping of films based on renewable resources.

13.
Carbohydr Polym ; 115: 457-64, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25439919

RESUMEN

In this work, a series of functional nanocrystals (F-CNCs) was successfully produced by an efficient preparation method, combining acid hydrolysis and Fischer esterification with various organic acids. Functionalities such as ATRP initiators, double bonds, triple bonds, and thiols could be incorporated on CNCs. Surface modification was confirmed by FT-IR, XPS, and elemental analysis. Physical properties of F-CNCs were assessed by AFM, XRD and TGA. Moreover, ATRP initiator functionalized CNCs were utilized to graft poly(methyl methacrylate) via ATRP, thiol functionalized CNCs were reacted with Ellman's reagent to determine the thiol content and dye disperse red 13 was attached to alkyne functionalized CNCs to estimate the propiolate content. The herein presented method is a highly versatile and straightforward procedure for the preparation of F-CNCs which is believed to be a better alternative for the commonly utilized, extensive, multistep, and time consuming post functionalization methods.

14.
Chem Soc Rev ; 42(13): 5858-79, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23628841

RESUMEN

Dendritic polymers are highly branched, globular architectures with multiple representations of functional groups. These nanoscale organic frameworks continue to fascinate researchers worldwide and are today under intensive investigation in application-driven research. A large number of potential application areas have been suggested for dendritic polymers, including theranostics, biosensors, optics, adhesives and coatings. The transition from potential to real applications is strongly dictated by their commercial accessibility, scaffolding ability as well as biocompatibility. A dendritic family that fulfills these requirements is based on the 2,2-bismethylolpropionic acid (bis-MPA) monomer. This critical review is the first of its kind to cover most of the research activities generated on aliphatic polyester dendritic architectures based on bis-MPA. It is apparent that these scaffolds will continue to be in the forefront of cutting-edge research as their structural variations are endless including dendrons, dendrimers, hyperbranched polymers, dendritic-linear hybrids and their hybridization with inorganic surfaces.

15.
Biomacromolecules ; 14(4): 1003-9, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23432336

RESUMEN

Cellulose microspheres bearing poly(ε-caprolactone) grafts of different molecular weights were investigated to evaluate the effect of graft length on the interfacial properties. Surface force and friction measurements were performed using an atomic force microscope in colloidal probe mode. The maximum interaction distance and adhesion is dependent on the temperature and the time in contact via a diffusion controlled mechanism. The effects are highest for the longer grafts, and molecular weight thresholds were found to lie between 21 and 34 kDa at 25 °C and between 9 and 21 kDa at 40 °C. The interpenetration of the graft into a matrix leads to "hidden length" contributions to adhesion, analogous to those in natural biocomposites. The nanotribology results display Amontonian behavior, and the friction force at zero applied load is higher at the graft-graft interface than for a bare cellulose sphere interacting with the graft. These results clearly demonstrate the benefits of the grafted polymer layer on the adhesion, toughness, and resistance to shear in the design of cellulosic nanobiocomposites.


Asunto(s)
Materiales Biocompatibles/química , Biomimética , Nanocompuestos/química , Materiales Biocompatibles/metabolismo , Celulosa/química , Celulosa/metabolismo , Microesferas , Poliésteres/química , Poliésteres/metabolismo , Polímeros , Propiedades de Superficie , Temperatura , Adherencias Tisulares
16.
Biomacromolecules ; 14(1): 64-74, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23043441

RESUMEN

In the present study, the two grafting techniques grafting-from - by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) - and grafting-to - by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) - were systematically compared, employing cellulose as a substrate. In order to obtain a meaningful comparison, it is crucial that the graft lengths of the polymers that are grafted from and to the substrates are essentially identical. Herein, this was achieved by utilizing the free polymer formed in parallel to the grafting-from reaction as the polymer for the grafting-to reaction. Four graft lengths were investigated, and the molar masses of the four free polymers (21 ≤ M(n) ≤ 100 kDa; 1.07 ≤ D(M) ≤ 1.26), i.e. the polymers subsequently employed in the grafting-to reaction, were shown to be in the same range as the molar masses of the polymers grafted from the surface (23 ≤ M(n) ≤ 87 kDa; 1.08 ≤ D(M) ≤ 1.31). The molecular weights of the chains grafted from the surface were established after cleavage from the cellulose substrates via size exclusion chromatography (SEC). High-resolution Fourier transform infrared microscopy (FT-IRM) was employed as an efficient tool to study the spatial distribution of the polymer content on the grafted substrates. In addition, the functionalized substrates were analyzed by X-ray photoelectron spectroscopy (XPS), contact angle (CA) measurements, and field-emission scanning electron microscopy (FE-SEM). For cellulose substrates modified via the grafting-from approach, the content of polymer on the surfaces increased with increasing graft length, confirming the possibility to tailor not only the length of the polymer grafts but also the polymeric content on the surface. In comparison, for the grafting-to reaction, the grafted content could not be controlled by varying the length of the preformed polymer: the polymer content was essentially the same for the four graft lengths. Consequently, the obtained results, when employing cellulose as a substrate and under these conditions, suggest that the grafting-from approach is superior to the grafting-to technique with respect to controlling the distribution of the polymeric content on the surface.


Asunto(s)
Materiales Biocompatibles/síntesis química , Química Farmacéutica/métodos , Polimerizacion , Polímeros/síntesis química , Celulosa/síntesis química
17.
ACS Appl Mater Interfaces ; 4(12): 6796-807, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23157287

RESUMEN

In this work, the objective was to synthesize and evaluate the properties of a compatibilizer based on poly(ε-caprolactone) aimed at tuning the surface properties of cellulose fibers used in fiber-reinforced biocomposites. The compatibilizer is an amphiphilic block copolymer consisting of two different blocks which have different functions. One block is cationic, quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and can therefore electrostatically attach to anionic reinforcing materials such as cellulose-based fibers/fibrils under mild conditions in water. The other block consists of poly(ε-caprolactone) (PCL) which can decrease the surface energy of a cellulose surface and also has the ability to form physical entanglements with a PCL surface thereby improving the interfacial adhesion. Atom Transfer Radical Polymerization (ATRP) and Ring-Opening Polymerization (ROP) were used to synthesize three block copolymers with the same length of the cationic PDMAEMA block but with different lengths of the PCL blocks. The block copolymers form cationic micelles in water which can adsorb to anionic surfaces such as silicon oxide and cellulose-model surfaces. After heat treatment, the contact angles of water on the treated surfaces increased significantly, and contact angles close to those of pure PCL were obtained for the block copolymers with longer PCL blocks. AFM force measurements showed a clear entangling behavior between the block copolymers and a PCL surface at about 60 °C, which is important for the formation of an adhesive interface in the final biocomposites. This demonstrates that this type of amphiphilic block copolymer can be used to improve interactions in biocomposites between anionic reinforcing materials such as cellulose-based fibers/fibrils and less polar matrices such as PCL.

18.
ACS Appl Mater Interfaces ; 4(6): 3191-8, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22646162

RESUMEN

In this work, highly porous nanopaper, i.e., sheets of papers made from non-aggregated nanofibrillated cellulose (NFC), have been surface-grafted with poly(ε-caprolactone) (PCL) by surface-initiated ring-opening polymerization (SI-ROP). The nanopaper has exceptionally high surface area (∼300 m(2)/g). The "grafting from" of the nanopapers was compared to "grafting from" of cellulose in the form of filter paper, and in both cases either titanium n-butoxide (Ti(On-Bu)4) or tin octoate (Sn(Oct)2) was utilized as a catalyst. It was found that a high surface area leads to significantly higher amount of grafted PCL in the substrates when Sn(Oct)2 was utilized as a catalyst. Up to 79 wt % PCL was successfully grafted onto the nanopapers as compared to filter paper where only 2-3 wt % PCL was grafted. However, utilizing Ti(On-Bu)4 this effect was not seen and the grafted amount was essentially similar, irrespectively of surface area. The mechanical properties of the grafted nanopaper proved to be superior to those of pure PCL films, especially at elevated temperatures. The present bottom-up preparation route of NFC-based composites allows high NFC content and provides excellent nanostructural control. This is an important advantage compared with some existing preparation routes where dispersion of the filler in the matrix is challenging.

19.
Chem Soc Rev ; 38(2): 352-62, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19169453

RESUMEN

Dendritic polymers are highly branched polymer structures, with complex, secondary architectures and well-defined spatial location of functional groups. Due to their unique physical and chemical features, applications in areas such as targeted drug-delivery, macromolecular carriers, catalysis, sensors, light harvesting, surface engineering and biomimetic materials have been proposed. However, only a few dendritic materials have been exploited commercially due to time consuming syntheses and the generation of significant waste/presence of unreacted starting materials. This tutorial review describes traditional synthesis of dendritic materials as well as recent advances in synthetic strategies, for example the use of Click chemistry, as a tool to efficiently obtain complex, functional dendritic structures.


Asunto(s)
Dendrímeros/análisis , Dendrímeros/síntesis química , Alquenos/química , Azidas/química , Catálisis , Dendrímeros/química , Estereoisomerismo , Triazoles/química
20.
ACS Appl Mater Interfaces ; 1(4): 816-23, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20356007

RESUMEN

Superhydrophobic and self-cleaning cellulose surfaces have been obtained via surface-confined grafting of glycidyl methacrylate using atom transfer radical polymerization combined with postmodification reactions. Both linear and branched graft-on-graft architectures were used for the postmodification reactions to obtain highly hydrophobic bio-fiber surfaces by functionalization of the grafts with either poly(dimethylsiloxane), perfluorinated chains, or alkyl chains, respectively. Postfunctionalization using alkyl chains yielded results similar to those of surfaces modified by perfluorination, in terms of superhydrophobicity, self-cleaning properties, and the stability of these properties over time. In addition, highly oleophobic surfaces have been obtained when modification with perfluorinated chains was performed.


Asunto(s)
Materiales Biocompatibles/química , Biopolímeros/química , Compuestos Epoxi/química , Metacrilatos/química , Cristalización/métodos , Ensayo de Materiales , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...