Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 8(5): e0017923, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37729548

RESUMEN

Group A Streptococcus (GAS) is a leading human pathogen for which there is no licensed vaccine. Infections are most common in young children and the elderly suggesting immunity accumulates with exposure until immune senescence in older age. Though protection has been postulated to be strain type specific, based on the M-protein (emm-type), the antigenic basis of population-level immunity remains poorly understood. Naturally acquired GAS antibody responses were investigated using intravenous immunoglobulin (IVIG), which contains pooled immunoglobulins from thousands of healthy human donors, as a surrogate for population immunity. Functional opsonophagocytic killing assays were conducted with GAS strains (n = 6) representing the three major emm-pattern types (emm12, A-C pattern; emm53, D-pattern; and emm75, E-pattern). While IVIG induced opsonophagocytic killing of all GAS strains tested, specificity assays showed the profile of protective antibodies differed considerably between emm-types. Antibodies targeting the M-protein were a major component of the functional IVIG antibody response for emm12 and emm53 strains but not for emm75 strains. The striking differences in the contribution of M-protein specific antibodies to killing suggest naturally acquired immunity differs between strains from the major emm-patterns. This challenges the dogma that M-protein is the primary protective antigen across all GAS straintypes. IMPORTANCE Group A Streptococcus (GAS) is a globally important pathogen. With the surge of invasive GAS infections that have occurred in multiple countries, contemporaneous with the relaxation of COVID-19 pandemic restrictions, there is increased interest in the mechanisms underpinning GAS immunity. We utilized intravenous immunoglobulin (IVIG), pooled immunoglobulins from thousands of healthy donors, as a surrogate for population-level immunity to GAS, and explored the contribution of strain-specific (M-type specific) antibodies to GAS immunity using functional killing assays. This revealed striking differences between major strain types as to the contribution of strain specific antibodies to killing. For GAS strains belonging to the E pattern group, M-type specific antibodies do not mediate killing and immunity, which contrasts with strains belonging to pattern A-C and D groups. This challenges the historical dogma, originally proposed by Rebecca Lancefield in the 1950-1960s, that the M-protein is the major protective antigen across all GAS strain types.


Asunto(s)
Antígenos Bacterianos , Inmunoglobulinas Intravenosas , Niño , Humanos , Preescolar , Anciano , Formación de Anticuerpos , Pandemias , Streptococcus pyogenes
2.
Immunol Res ; 71(4): 516-527, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36690876

RESUMEN

Autoimmune diseases are caused by the break-down in self-tolerance mechanisms and can result in the generation of autoantibodies specific to human antigens. Human autoantigen profiling technologies such as solid surface arrays and display technologies are powerful high-throughput technologies utilised to discover and map novel autoantigens associated with disease. This review compares human autoantigen profiling technologies including the application of these approaches in chronic and post-infectious autoimmune disease. Each technology has advantages and limitations that should be considered when designing new projects to profile autoantibodies. Recent studies that have utilised these technologies across a range of diseases have highlighted marked heterogeneity in autoantibody specificity between individuals as a frequent feature. This individual heterogeneity suggests that epitope spreading maybe an important mechanism in the pathogenesis of autoimmune disease in general and likely contributes to inflammatory tissue damage and symptoms. Studies focused on identifying autoantibody biomarkers for diagnosis should use targeted data analysis to identify the rarer public epitopes and antigens, common between individuals. Thus, utilisation of human autoantigen profiling technology, combined with different analysis approaches, can illuminate both pathogenesis and biomarker discovery.


Asunto(s)
Enfermedades Autoinmunes , Humanos , Enfermedades Autoinmunes/diagnóstico , Autoanticuerpos , Autoantígenos , Epítopos
3.
Vaccine ; 40(33): 4827-4834, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35792021

RESUMEN

BACKGROUND: The mRNA COVID vaccines are only licensed for intramuscular injection but it is unclear whether successful intramuscular administration is required for immunogenicity. METHODS: In this observational study, eligible adults receiving their first ComirnatyTM/BNT162b2 dose had their skin to deltoid muscle distance (SDMD) measured by ultrasound. The relationship between SDMD and height, weight, body mass index, and arm circumference was assessed. Three needle length groups were identified: 'clearly sufficient' (needle exceeding SDMD by >5 mm), 'probably sufficient' (needle exceeding SDMD by ≤ 5 mm), and 'insufficient' (needle length ≤ SDMD). Baseline and follow-up finger prick blood samples were collected and the primary outcome variable was mean spike antibody levels in the three needle length groups. RESULTS: Participants (n = 402) had a mean age of 34.7 years, BMI 29.1 kg/m2, arm circumference 37.5 cm, and SDMD 13.3 mm. The SDMD was >25 mm in 23/402 (5.7%) and >20 mm in 61/402 (15.2%) participants. Both arm circumference (≥40 cm) and BMI (≥33 kg/m2) were able to identify those with a SDMD of >25 mm, the length of a standard injection needle, with a sensitivity of 100% and specificities of 71.2 and 79.9%, respectively. Of 249/402 (62%) participants with paired blood samples, there was no significant difference in spike antibody titres between needle length groups. The mean (SD) spike BAU/mL was 464.5 (677.1) in 'clearly sufficient needle length' (n = 217) compared with 506.4 (265.1) in 'probably sufficient' (n = 21, p = 0.09), and 489.4 (452.3) in 'insufficient needle length' (n = 11, p = 0.65). CONCLUSIONS: A 25 mm needle length is likely to be inadequate to ensure vaccine deposition within the deltoid muscle in a small proportion of adults. Vaccine-induced spike antibody titres were comparable in those vaccinated with a needle of sufficient versus insufficient length suggesting deltoid muscle deposition may not be required for an adequate antibody response to mRNA vaccines.


Asunto(s)
COVID-19 , Vacunas , Adulto , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Músculo Deltoides , Humanos , Inmunogenicidad Vacunal , ARN Mensajero
4.
Epidemiol Infect ; 149: e173, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34668464

RESUMEN

New Zealand has a strategy of eliminating SARS-CoV-2 that has resulted in a low incidence of reported coronavirus-19 disease (COVID-19). The aim of this study was to describe the spread of SARS-CoV-2 in New Zealand via a nationwide serosurvey of blood donors. Samples (n = 9806) were collected over a month-long period (3 December 2020-6 January 2021) from donors aged 16-88 years. The sample population was geographically spread, covering 16 of 20 district health board regions. A series of Spike-based immunoassays were utilised, and the serological testing algorithm was optimised for specificity given New Zealand is a low prevalence setting. Eighteen samples were seropositive for SARS-CoV-2 antibodies, six of which were retrospectively matched to previously confirmed COVID-19 cases. A further four were from donors that travelled to settings with a high risk of SARS-CoV-2 exposure, suggesting likely infection outside New Zealand. The remaining eight seropositive samples were from seven different district health regions for a true seroprevalence estimate, adjusted for test sensitivity and specificity, of 0.103% (95% confidence interval, 0.09-0.12%). The very low seroprevalence is consistent with limited undetected community transmission and provides robust, serological evidence to support New Zealand's successful elimination strategy for COVID-19.


Asunto(s)
Donantes de Sangre/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/prevención & control , Erradicación de la Enfermedad/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/transmisión , Prueba Serológica para COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nueva Zelanda/epidemiología , Prevalencia , SARS-CoV-2/inmunología , Estudios Seroepidemiológicos , Adulto Joven
5.
Front Immunol ; 12: 702877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335616

RESUMEN

Background: Acute rheumatic fever (ARF) is a serious sequela of Group A Streptococcus (GAS) infection associated with significant global mortality. Pathogenesis remains poorly understood, with the current prevailing hypothesis based on molecular mimicry and the notion that antibodies generated in response to GAS infection cross-react with cardiac proteins such as myosin. Contemporary investigations of the broader autoantibody response in ARF are needed to both inform pathogenesis models and identify new biomarkers for the disease. Methods: This study has utilised a multi-platform approach to profile circulating autoantibodies in ARF. Sera from patients with ARF, matched healthy controls and patients with uncomplicated GAS pharyngitis were initially analysed for autoreactivity using high content protein arrays (Protoarray, 9000 autoantigens), and further explored using a second protein array platform (HuProt Array, 16,000 autoantigens) and 2-D gel electrophoresis of heart tissue combined with mass spectrometry. Selected autoantigens were orthogonally validated using conventional immunoassays with sera from an ARF case-control study (n=79 cases and n=89 matched healthy controls) and a related study of GAS pharyngitis (n=39) conducted in New Zealand. Results: Global analysis of the protein array data showed an increase in total autoantigen reactivity in ARF patients compared with controls, as well as marked heterogeneity in the autoantibody profiles between ARF patients. Autoantigens previously implicated in ARF pathogenesis, such as myosin and collagens were detected, as were novel candidates. Disease pathway analysis revealed several autoantigens within pathways linked to arthritic and myocardial disease. Orthogonal validation of three novel autoantigens (PTPN2, DMD and ANXA6) showed significant elevation of serum antibodies in ARF (p < 0.05), and further highlighted heterogeneity with patients reactive to different combinations of the three antigens. Conclusions: The broad yet heterogenous elevation of autoantibodies observed suggests epitope spreading, and an expansion of the autoantibody repertoire, likely plays a key role in ARF pathogenesis and disease progression. Multiple autoantigens may be needed as diagnostic biomarkers to capture this heterogeneity.


Asunto(s)
Autoanticuerpos/sangre , Autoantígenos/química , Análisis por Matrices de Proteínas , Fiebre Reumática/sangre , Streptococcus pyogenes , Niño , Humanos , Nueva Zelanda
6.
Pathog Dis ; 79(6)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34185083

RESUMEN

Acute rheumatic fever (ARF) is a serious post-infectious immune sequelae of Group A streptococcus (GAS). Pathogenesis remains poorly understood, including the events associated with collagen autoantibody generation. GAS express streptococcal collagen-like proteins (Scl) that contain a collagenous domain resembling human collagen. Here, the relationship between antibody reactivity to GAS Scl proteins and human collagen in ARF was investigated. Serum IgG specific for a representative Scl protein (Scl1.1) together with collagen-I and collagen-IV mimetic peptides were quantified in ARF patients (n = 36) and healthy matched controls (n = 36). Reactivity to Scl1.1 was significantly elevated in ARF compared to controls (P < 0.0001) and this was mapped to the collagen-like region of the protein, rather than the N-terminal non-collagenous region. Reactivity to collagen-1 and collagen-IV peptides was also significantly elevated in ARF cases (P < 0.001). However, there was no correlation between Scl1.1 and collagen peptide antibody binding, and hierarchical clustering of ARF cases by IgG reactivity showed two distinct clusters, with Scl1.1 antigens in one and collagen peptides in the other, demonstrating that collagen autoantibodies are not immunologically related to those targeting Scl1.1. Thus, anti-collagen antibodies in ARF appear to be generated as part of the autoreactivity process, independent of any mimicry with GAS collagen-like proteins.


Asunto(s)
Formación de Anticuerpos , Proteínas Bacterianas/inmunología , Colágeno/inmunología , Fiebre Reumática/inmunología , Fiebre Reumática/microbiología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Adolescente , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Péptidos/inmunología , Proteínas Recombinantes/inmunología , Infecciones Estreptocócicas/microbiología
7.
PeerJ ; 8: e9863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32953275

RESUMEN

BACKGROUND: Serological assays that detect antibodies to SARS-CoV-2 are critical for determining past infection and investigating immune responses in the COVID-19 pandemic. We established ELISA-based immunoassays using locally produced antigens when New Zealand went into a nationwide lockdown and the supply chain of diagnostic reagents was a widely held domestic concern. The relationship between serum antibody binding measured by ELISA and neutralising capacity was investigated using a surrogate viral neutralisation test (sVNT). METHODS: A pre-pandemic sera panel (n = 113), including respiratory infections with symptom overlap with COVID-19, was used to establish assay specificity. Sera from PCR­confirmed SARS-CoV-2 patients (n = 21), and PCR-negative patients with respiratory symptoms suggestive of COVID-19 (n = 82) that presented to the two largest hospitals in Auckland during the lockdown period were included. A two-step IgG ELISA based on the receptor binding domain (RBD) and spike protein was adapted to determine seropositivity, and neutralising antibodies that block the RBD/hACE­2 interaction were quantified by sVNT. RESULTS: The calculated cut-off (>0.2) in the two-step ELISA maximised specificity by classifying all pre-pandemic samples as negative. Sera from all PCR-confirmed COVID-19 patients were classified as seropositive by ELISA ≥7 days after symptom onset. There was 100% concordance between the two-step ELISA and the sVNT with all 7+ day sera from PCR­confirmed COVID-19 patients also classified as positive with respect to neutralising antibodies. Of the symptomatic PCR-negative cohort, one individual with notable travel history was classified as positive by two-step ELISA and sVNT, demonstrating the value of serology in detecting prior infection. CONCLUSIONS: These serological assays were established and assessed at a time when human activity was severely restricted in New Zealand. This was achieved by generous sharing of reagents and technical expertise by the international scientific community, and highly collaborative efforts of scientists and clinicians across the country. The assays have immediate utility in supporting clinical diagnostics, understanding transmission in high-risk cohorts and underpinning longer­term 'exit' strategies based on effective vaccines and therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...