Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(5)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243219

RESUMEN

The ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.2.1), a BA.4 isolate lacked all the typical disease characteristics of other isolates seen in the Golden Syrian hamster model despite replicating almost as effectively. Animals infected with BA.4 had similar viral shedding profiles to those seen with BA.5.2.1 (up to day 6 post-infection), but they all failed to lose weight or present with any other significant clinical signs. We hypothesize that this lack of detectable signs of disease during infection with BA.4 was due to a small (nine nucleotide) deletion (∆686-694) in the viral genome (ORF1ab) responsible for the production of non-structural protein 1, which resulted in the loss of three amino acids (aa 141-143).


Asunto(s)
COVID-19 , Animales , Cricetinae , SARS-CoV-2/genética , Mesocricetus , Aminoácidos , Glicoproteína de la Espiga del Coronavirus/genética
2.
PLoS Pathog ; 19(4): e1011293, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014911

RESUMEN

The mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.1. We established that BA.1 infection in naïve Syrian hamsters resulted in a less severe disease than a comparable dose of the ancestral virus, with fewer clinical signs including less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of BA.1 50 days after an initial infection with ancestral virus. These data provide evidence that convalescent immunity against ancestral SARS-CoV-2 is protective against BA.1 in the Syrian hamster model of infection. Comparison with published pre-clinical and clinical data supports consistency of the model and its predictive value for the outcome in humans. Further, the ability to detect protection against the less severe disease caused by BA.1 demonstrates continued value of the Syrian hamster model for evaluation of BA.1-specific countermeasures.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Convalecencia , Mesocricetus , SARS-CoV-2
3.
Viruses ; 15(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992457

RESUMEN

The golden Syrian hamster (Mesocricetus auratus) is now commonly used in preclinical research for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the assessment of vaccines, drugs and therapeutics. Here, we show that hamsters inoculated via the intranasal route with the same infectious virus dose of prototypical SARS-CoV-2 administered in a different volume present with different clinical signs, weight loss and viral shedding, with a reduced volume resulting in reduced severity of disease similar to that obtained by a 500-fold reduction in the challenge dose. The tissue burden of the virus and the severity of pulmonary pathology were also significantly affected by different challenge inoculum volumes. These findings suggest that a direct comparison between the severity of SARS-CoV-2 variants or studies assessing the efficacy of treatments determined by hamster studies cannot be made unless both the challenge dose and inoculation volume are matched when using the intranasal route. Additionally, analysis of sub-genomic and total genomic RNA PCR data demonstrated no link between sub-genomic and live viral titres and that sub-genomic analyses do not provide any information beyond that provided by more sensitive total genomic PCR.


Asunto(s)
COVID-19 , Cricetinae , Animales , Humanos , Mesocricetus , COVID-19/patología , SARS-CoV-2 , Pulmón , Gravedad del Paciente , Modelos Animales de Enfermedad
4.
Commun Biol ; 5(1): 1228, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369270

RESUMEN

Bacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.


Asunto(s)
Peptidoglicano , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Membrana/metabolismo , División Celular , Pared Celular/metabolismo
5.
Nanoscale ; 14(46): 17297-17314, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374249

RESUMEN

An important aspect of immunotherapy is the ability of dendritic cells (DCs) to prime T cell immunity, an approach that has yielded promising results in some early phase clinical trials. However, novel approaches are required to improve DC therapeutic efficacy by enhancing their uptake of, and activation by, disease relevant antigens. The carbon nano-material graphene oxide (GO) may provide a unique way to deliver antigen to innate immune cells and modify their ability to initiate effective adaptive immune responses. We have assessed whether GO of various lateral sizes affects DC activation and function in vitro and in vivo, including their ability to take up, process and present the well-defined model antigen ovalbumin (OVA). We have found that GO flakes are internalised by DCs, while having minimal effect on their viability, activation phenotype or cytokine production. Although adsorption of OVA protein to either small or large GO flakes promoted its uptake into DCs, large GO interfered with OVA processing. In terms of modulation of DC function, delivery of OVA via small GO flakes significantly enhanced DC ability to induce proliferation of OVA-specific CD4+ T cells, promoting granzyme B secretion in vitro. On the other hand, delivery of OVA via large GO flakes augmented DC ability to induce proliferation of OVA-specific CD8+ T cells, and their production of IFN-γ and granzyme B. Together, these data demonstrate the capacity of GO of different lateral dimensions to act as a promising delivery platform for DC modulation of distinct facets of the adaptive immune response, information that could be exploited for future development of targeted immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos , Células Dendríticas , Animales , Ratones , Granzimas/metabolismo , Ovalbúmina , Antígenos , Citocinas/metabolismo , Ratones Endogámicos C57BL
6.
Viruses ; 13(11)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34835057

RESUMEN

The global pandemic of coronavirus disease (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to an international thrust to study pathogenesis and evaluate interventions. Experimental infection of hamsters and the resulting respiratory disease is one of the preferred animal models since clinical signs of disease and virus shedding are similar to more severe cases of human COVID-19. The main route of challenge has been direct inoculation of the virus via the intranasal route. To resemble the natural infection, we designed a bespoke natural transmission cage system to assess whether recipient animals housed in physically separate adjacent cages could become infected from a challenged donor animal in a central cage, with equal airflow across the two side cages. To optimise viral shedding in the donor animals, a low and moderate challenge dose were compared after direct intranasal challenge, but similar viral shedding responses were observed and no discernible difference in kinetics. The results from our natural transmission set-up demonstrate that most recipient hamsters are infected within the system developed, with variation in the kinetics and levels of disease between individual animals. Common clinical outputs used for the assessment in directly-challenged hamsters, such as weight loss, are less obvious in hamsters who become infected from naturally acquiring the infection. The results demonstrate the utility of a natural transmission model for further work on assessing the differences between virus strains and evaluating interventions using a challenge system which more closely resembles human infection.


Asunto(s)
COVID-19/transmisión , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2/fisiología , Animales , COVID-19/patología , COVID-19/virología , Cricetinae , Femenino , Pulmón/patología , Masculino , Cavidad Nasal/patología , Carga Viral , Esparcimiento de Virus
7.
Nat Commun ; 12(1): 5469, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552091

RESUMEN

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Administración Intranasal , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Epítopos/química , Epítopos/metabolismo , Femenino , Masculino , Mesocricetus , Pruebas de Neutralización , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
8.
PLoS Pathog ; 17(9): e1009880, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529737

RESUMEN

Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Simbiosis/fisiología , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Sepsis/inmunología , Sepsis/microbiología , Infecciones Estafilocócicas/inmunología , Pez Cebra
9.
PLoS Pathog ; 17(3): e1009468, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788901

RESUMEN

Peptidoglycan is the major structural component of the Staphylococcus aureus cell wall, in which it maintains cellular integrity, is the interface with the host, and its synthesis is targeted by some of the most crucial antibiotics developed. Despite this importance, and the wealth of data from in vitro studies, we do not understand the structure and dynamics of peptidoglycan during infection. In this study we have developed methods to harvest bacteria from an active infection in order to purify cell walls for biochemical analysis ex vivo. Isolated ex vivo bacterial cells are smaller than those actively growing in vitro, with thickened cell walls and reduced peptidoglycan crosslinking, similar to that of stationary phase cells. These features suggested a role for specific peptidoglycan homeostatic mechanisms in disease. As S. aureus missing penicillin binding protein 4 (PBP4) has reduced peptidoglycan crosslinking in vitro its role during infection was established. Loss of PBP4 resulted in an increased recovery of S. aureus from the livers of infected mice, which coincided with enhanced fitness within murine and human macrophages. Thicker cell walls correlate with reduced activity of peptidoglycan hydrolases. S. aureus has a family of 4 putative glucosaminidases, that are collectively crucial for growth. Loss of the major enzyme SagB, led to attenuation during murine infection and reduced survival in human macrophages. However, loss of the other three enzymes Atl, SagA and ScaH resulted in clustering dependent attenuation, in a zebrafish embryo, but not a murine, model of infection. A combination of pbp4 and sagB deficiencies resulted in a restoration of parental virulence. Our results, demonstrate the importance of appropriate cell wall structure and dynamics during pathogenesis, providing new insight to the mechanisms of disease.


Asunto(s)
Pared Celular/fisiología , Interacciones Huésped-Patógeno/fisiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Virulencia/fisiología , Animales , Ratones , Peptidoglicano/metabolismo , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/metabolismo , Pez Cebra
10.
PLoS Pathog ; 16(7): e1008672, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32706832

RESUMEN

Most clinical MRSA (methicillin-resistant S. aureus) isolates exhibit low-level ß-lactam resistance (oxacillin MIC 2-4 µg/ml) due to the acquisition of a novel penicillin binding protein (PBP2A), encoded by mecA. However, strains can evolve high-level resistance (oxacillin MIC ≥256 µg/ml) by an unknown mechanism. Here we have developed a robust system to explore the basis of the evolution of high-level resistance by inserting mecA into the chromosome of the methicillin-sensitive S. aureus SH1000. Low-level mecA-dependent oxacillin resistance was associated with increased expression of anaerobic respiratory and fermentative genes. High-level resistant derivatives had acquired mutations in either rpoB (RNA polymerase subunit ß) or rpoC (RNA polymerase subunit ß') and these mutations were shown to be responsible for the observed resistance phenotype. Analysis of rpoB and rpoC mutants revealed decreased growth rates in the absence of antibiotic, and alterations to, transcription elongation. The rpoB and rpoC mutations resulted in decreased expression to parental levels, of anaerobic respiratory and fermentative genes and specific upregulation of 11 genes including mecA. There was however no direct correlation between resistance and the amount of PBP2A. A mutational analysis of the differentially expressed genes revealed that a member of the S. aureus Type VII secretion system is required for high level resistance. Interestingly, the genomes of two of the high level resistant evolved strains also contained missense mutations in this same locus. Finally, the set of genetically matched strains revealed that high level antibiotic resistance does not incur a significant fitness cost during pathogenesis. Our analysis demonstrates the complex interplay between antibiotic resistance mechanisms and core cell physiology, providing new insight into how such important resistance properties evolve.


Asunto(s)
Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica/genética , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas de Unión a las Penicilinas/genética , Resistencia betalactámica/genética , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...