Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Nano Lett ; 23(3): 843-849, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36689622

RESUMEN

The operation of nanoscale electronic devices is related intimately to the three-dimensional (3D) charge density distributions within them. Here, we demonstrate the quantitative 3D mapping of the charge density and long-range electric field associated with an electrically biased carbon fiber nanotip with a spatial resolution of approximately 5 nm using electron holographic tomography in the transmission electron microscope combined with model-based iterative reconstruction. The approach presented here can be applied to a wide range of other nanoscale materials and devices.

4.
Phys Rev Lett ; 129(5): 057201, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960587

RESUMEN

We report a magnetic transition region in La_{0.7}Sr_{0.3}MnO_{3} with gradually changing magnitude of magnetization, but no rotation, stable at all temperatures below T_{C}. Spatially resolved magnetization, composition and Mn valence data reveal that the magnetic transition region is induced by a subtle Mn composition change, leading to charge transfer at the interface due to carrier diffusion and drift. The electrostatic shaping of the magnetic transition region is mediated by the Mn valence, which affects both magnetization by Mn^{3+}-Mn^{4+} double exchange interaction and free carrier concentration.


Asunto(s)
Magnetismo , Electricidad Estática , Temperatura
5.
iScience ; 25(4): 104047, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35359811

RESUMEN

Magnetic high-entropy alloys (HEAs) are a new category of high-performance magnetic materials, with multicomponent concentrated compositions and complex multi-phase structures. Although there have been numerous reports of their interesting magnetic properties, there is very limited understanding about the interplay between their hierarchical multi-phase structures and the resulting magnetic behavior. We reveal for the first time the influence of a hierarchically decomposed B2 + A2 structure in an AlCo0.5Cr0.5FeNi HEA on the formation of magnetic vortex states within individual A2 (disordered BCC) precipitates, which are distributed in an ordered B2 matrix that is weakly ferromagnetic. Non-magnetic or weakly ferromagnetic B2 precipitates in large magnetic domains of the A2 phase, and strongly magnetic Fe-Co-rich interphase A2 regions, are also observed. These results provide important insight into the origin of coercivity in this HEA, which can be attributed to a complex magnetization process that includes the successive reversal of magnetic vortices.

6.
Sci Rep ; 10(1): 21209, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273594

RESUMEN

Some of the best-performing high-temperature magnets are Sm-Co-based alloys with a microstructure that comprises an [Formula: see text] matrix and magnetically hard [Formula: see text] cell walls. This generates a dense domain-wall-pinning network that endows the material with remarkable magnetic hardness. A precise understanding of the coupling between magnetism and microstructure is essential for enhancing the performance of Sm-Co magnets, but experiments and theory have not yet converged to a unified model. Here, transmission electron microscopy, atom probe tomography, and nanometer-resolution off-axis electron holography have been combined with micromagnetic simulations to reveal that the magnetization state in Sm-Co magnets results from curling instabilities and domain-wall pinning effects at the intersections of phases with different magnetic hardness. Additionally, this study has found that topologically non-trivial magnetic domains separated by a complex network of domain walls play a key role in the magnetic state by acting as nucleation sites for magnetization reversal. These findings reveal previously hidden aspects of magnetism in Sm-Co magnets and, by identifying weak points in the microstructure, provide guidelines for improving these high-performance magnetic materials.

7.
J Vis Exp ; (166)2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33346200

RESUMEN

Off-axis electron holography is a powerful technique that involves the formation of an interference pattern in a transmission electron microscope (TEM) by overlapping two parts of an electron wave, one of which has passed through a region of interest on a specimen and the other is a reference wave. The resulting off-axis electron hologram can be analyzed digitally to recover the phase difference between the two parts of the electron wave, which can then be interpreted to provide quantitative information about local variations in electrostatic potential and magnetic induction within and around the specimen. Off-axis electron holograms can be recorded while a specimen is subjected to external stimuli such as elevated or reduced temperature, voltage, or light. The protocol that is presented here describes the practical steps that are required to record, analyze, and interpret off-axis electron holograms, with a primary focus on the measurement of magnetic fields within and around nanoscale materials and devices. Presented here are the steps involved in the recording, analysis, and processing of off-axis electron holograms, as well as the reconstruction and interpretation of phase images and visualization of the results. Also discussed are the need for optimization of the specimen geometry, the electron optical configuration of the microscope, and the electron hologram acquisition parameters, as well as the need for the use of information from multiple holograms to extract the desired magnetic contributions from the recorded signal. The steps are illustrated through a study of specimens of B20-type FeGe, which contain magnetic skyrmions and were prepared with focused ion beams (FIBs). Prospects for the future development of the technique are discussed.


Asunto(s)
Electrones , Holografía , Campos Magnéticos , Microscopía Electrónica de Transmisión/instrumentación , Temperatura
8.
Nano Lett ; 20(5): 3642-3650, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32250635

RESUMEN

Arrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices. Via block copolymer templating, we produce Ni75Fe25 single-gyroid and double-gyroid (an inversion pair of single-gyroids) nanostructures with a 42 nm unit cell and 11 nm diameter struts, comparable to the exchange length in Ni-Fe. We visualize their magnetization distributions via off-axis electron holography with nanometer spatial resolution and interpret the patterns using finite-element micromagnetic simulations. Our results suggest an intricate, frustrated remanent state which is ferromagnetic but without a unique equilibrium configuration, opening new possibilities for collective phenomena in magnetism, including 3D magnonic crystals and unconventional computing.

9.
J Chem Phys ; 152(11): 114202, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32199423

RESUMEN

Investigating the local micromagnetic structure of ferromagnetic nanowires (NWs) at the nanoscale is essential to study the structure-property relationships and can facilitate the design of nanostructures for technology applications. Herein, we synthesized high-quality iron and cobalt NWs and investigated the magnetic properties of these NWs using off-axis electron holography. The Fe NWs are about 100 nm in width and a few micrometers in length with a preferential growth direction of [100], while the Co NWs have a higher aspect-ratio with preferential crystal growth along the [110] direction. It is noted that compact passivation surface layers of oxides protect these NWs from further oxidation, even after nearly two years of exposure to ambient conditions; furthermore, these NWs display homogeneous ferromagnetism along their axial direction revealing the domination of shape anisotropy on magnetic behavior. Importantly, the average value of magnetic induction strengths of Fe NWs (2.07 {±} 0.10 T) and Co NWs (1.83 {±} 0.15 T) is measured to be very close to the respective theoretical value, and it shows that the surface oxide layers do not affect the magnetic moments in NWs. Our results provide a useful synthesis approach for the fabrication of single-crystalline, defect-free metal NWs and give insight into the micromagnetic properties in ferromagnetic NWs based on the transmission electron microscopy measurements.

10.
Phys Rev Lett ; 120(16): 167204, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756913

RESUMEN

Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization M_{S} by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of M_{S} inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.

11.
Nat Nanotechnol ; 13(6): 451-455, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29632400

RESUMEN

Chiral magnetic skyrmions1,2 are nanoscale vortex-like spin textures that form in the presence of an applied magnetic field in ferromagnets that support the Dzyaloshinskii-Moriya interaction (DMI) because of strong spin-orbit coupling and broken inversion symmetry of the crystal3,4. In sharp contrast to other systems5,6 that allow for the formation of a variety of two-dimensional (2D) skyrmions, in chiral magnets the presence of the DMI commonly prevents the stability and coexistence of topological excitations of different types 7 . Recently, a new type of localized particle-like object-the chiral bobber (ChB)-was predicted theoretically in such materials 8 . However, its existence has not yet been verified experimentally. Here, we report the direct observation of ChBs in thin films of B20-type FeGe by means of quantitative off-axis electron holography (EH). We identify the part of the temperature-magnetic field phase diagram in which ChBs exist and distinguish two mechanisms for their nucleation. Furthermore, we show that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrmions and bobbers.

12.
Nat Commun ; 8: 15569, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28580935

RESUMEN

The ability to controllably manipulate magnetic skyrmions, small magnetic whirls with particle-like properties, in nanostructured elements is a prerequisite for incorporating them into spintronic devices. Here, we use state-of-the-art electron holographic imaging to directly visualize the morphology and nucleation of magnetic skyrmions in a wedge-shaped FeGe nanostripe that has a width in the range of 45-150 nm. We find that geometrically-confined skyrmions are able to adopt a wide range of sizes and ellipticities in a nanostripe that are absent in both thin films and bulk materials and can be created from a helical magnetic state with a distorted edge twist in a simple and efficient manner. We perform a theoretical analysis based on a three-dimensional general model of isotropic chiral magnets to confirm our experimental results. The flexibility and ease of formation of geometrically confined magnetic skyrmions may help to optimize the design of skyrmion-based memory devices.

13.
Nano Lett ; 17(3): 1395-1401, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28125235

RESUMEN

We use in situ Lorentz microscopy and off-axis electron holography to investigate the formation and characteristics of skyrmion lattice defects and their relationship to the underlying crystallographic structure of a B20 FeGe thin film. We obtain experimental measurements of spin configurations at grain boundaries, which reveal inversions of crystallographic and magnetic chirality across adjacent grains, resulting in the formation of interface spin stripes at the grain boundaries. In the absence of material defects, we observe that skyrmions lattices possess dislocations and domain boundaries, in analogy to atomic crystals. Moreover, the distorted skyrmions can flexibly change their size and shape to accommodate local geometry, especially at sites of dislocations in the skyrmion lattice. Our findings provide a detailed understanding of the elasticity of topologically protected skyrmions and their correlation with underlying material defects.

14.
J Biomed Opt ; 20(10): 105007, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26469563

RESUMEN

Hard-tissue ablation was already investigated for a broad variety of pulsed laser systems, which cover almost the entire range of available wavelengths and pulse parameters. Most effective in hard-tissue ablation are Er:YAG and CO2 lasers, both utilizing the effect of absorption of infrared wavelengths by water and so-called explosive vaporization, when a thin water film or water­air spray is supplied. The typical flow rates and the water layer thicknesses are too low for surgical applications where bleeding occurs and wound flushing is necessary. We studied a 20 W ps-laser with 532 nm wavelength and a pulse energy of 1 mJ to effectively ablate bones that are submerged 14 mm under water. For these laser parameters, the plasma-mediated ablation mechanism is dominant. Simulations based on the blow-off model predict the cut depth and cross-sectional shape of the incision. The model is modified considering the cross section of the Gaussian beam, the incident angle, and reflections. The ablation rate amounts to 0.2 mm3/s, corresponding to an increase by at least 50% of the highest values published so far for ultrashort laser ablation of hard tissue.


Asunto(s)
Fémur/cirugía , Inmersión , Terapia por Láser/instrumentación , Rayos Láser , Osteotomía/instrumentación , Agua , Animales , Bovinos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Fémur/patología , Técnicas In Vitro , Modelos Biológicos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Cirugía Asistida por Computador/instrumentación , Cirugía Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...