Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Immunol ; 198(6): 2434-2444, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159901

RESUMEN

In B lymphocytes, Ig class switch recombination (CSR) is induced by activation-induced cytidine deaminase, which initiates a cascade of events leading to DNA double-strand break formation in switch (S) regions. Resolution of DNA double-strand breaks proceeds through formation of S-S synaptic complexes. S-S synapsis is mediated by a chromatin loop that spans the C region domain of the Igh locus. S-S junctions are joined via a nonhomologous end joining DNA repair process. CSR occurs via an intrachromosomal looping out and deletion mechanism that is 53BP1 dependent. However, the mechanism by which 53BP1 facilitates deletional CSR and inhibits inversional switching events remains unknown. We report a novel architectural role for 53BP1 in Igh chromatin looping in mouse B cells. Long-range interactions between the Eµ and 3'Eα enhancers are significantly diminished in the absence of 53BP1. In contrast, germline transcript promoter:3'Eα looping interactions are unaffected by 53BP1 deficiency. Furthermore, 53BP1 chromatin occupancy at sites in the Igh locus is B cell specific, is correlated with histone H4 lysine 20 marks, and is subject to chromatin spreading. Thus, 53BP1 is required for three-dimensional organization of the Igh locus and provides a plausible explanation for the link with 53BP1 enforcement of deletional CSR.


Asunto(s)
Linfocitos B/fisiología , Cromatina/metabolismo , Cambio de Clase de Inmunoglobulina , Isomerasas de Vínculo Azufre-Azufre/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Diferenciación Celular/genética , Cromatina/inmunología , Citidina Desaminasa/genética , Roturas del ADN de Doble Cadena , Elementos de Facilitación Genéticos/genética , Sitios Genéticos/genética , Histonas/genética , Histonas/metabolismo , Inmunoglobulina E/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética , Recombinación Genética , Isomerasas de Vínculo Azufre-Azufre/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
3.
Nat Rev Mol Cell Biol ; 13(2): 115-26, 2012 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-22266761

RESUMEN

Histone side chains are post-translationally modified at multiple sites, including at Lys36 on histone H3 (H3K36). Several enzymes from yeast and humans, including the methyltransferases SET domain-containing 2 (Set2) and nuclear receptor SET domain-containing 1 (NSD1), respectively, alter the methylation status of H3K36, and significant progress has been made in understanding how they affect chromatin structure and function. Although H3K36 methylation is most commonly associated with the transcription of active euchromatin, it has also been implicated in diverse processes, including alternative splicing, dosage compensation and transcriptional repression, as well as DNA repair and recombination. Disrupted placement of methylated H3K36 within the chromatin landscape can lead to a range of human diseases, underscoring the importance of this modification.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Comprensión/fisiología , Expresión Génica/fisiología , Humanos , Metilación , Modelos Biológicos
4.
Transcription ; 2(4): 158-161, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21922056

RESUMEN

The three components of the mammalian nuclear SET domain containing protein (NSD) family have been implicated in multiple diseases and cancers, but very little is known about their mechanisms of action. NSD proteins are epigenetic regulators and methylate lysine side chains, particularly lysine 36 of histone H3 (H3K36), where they appear to deposit mono and/or dimethyl marks. This modification (H3K36Me) has been shown to be important in various processes including gene expression, alternative splicing and DNA repair. Here, we examine recent findings regarding the oncogenic role of NSD proteins and suggest that a de-regulated switch between H3K36Me and H3K27Me plays an important role in the oncogenic potential of NSD proteins.

5.
Proc Natl Acad Sci U S A ; 107(39): 16952-7, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20837538

RESUMEN

The NSD (nuclear receptor-binding SET domain protein) family encodes methyltransferases that are important in multiple aspects of development and disease. Perturbations in NSD family members can lead to Sotos syndrome and Wolf-Hirschhorn syndrome as well as cancers such as acute myeloid leukemia. Previous studies have implicated NSD1 (KMT3B) in transcription and methylation of histone H3 at lysine 36 (H3-K36), but its molecular mechanism in these processes remains largely unknown. Here we describe an NSD1 regulatory network in human cells. We show that NSD1 binds near various promoter elements and regulates multiple genes that appear to have a concerted role in various processes, such as cell growth/cancer, keratin biology, and bone morphogenesis. In particular, we show that NSD1 binding is concentrated upstream of gene targets such as the bone morphogenetic protein 4 (BMP4) and zinc finger protein 36 C3H type-like 1 (ZFP36L1/TPP). NSD1 regulates the levels of the various forms of methylation at H3-K36 primarily, but not exclusively, within the promoter proximal region occupied by NSD1. At BMP4 we find that this reduces the levels of RNAP II recruited to the promoter, suggesting a role for NSD1-dependent methylation in initiation. Interestingly, we also observe that the RNAP II molecules that lie within BMP4 have inappropriate persistence of serine-5 phosphorylation and reduced levels of serine-2 phosphorylation within the C-terminal domain (CTD) of the large subunit of RNAP II. Our findings indicate that NSD1 regulates RNAP II recruitment to BMP4, and failure to do so leads to reduced gene expression and abrogated levels of H3K36Me and CTD phosphorylation.


Asunto(s)
Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Proteína Morfogenética Ósea 4/genética , Factor 1 de Respuesta al Butirato/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Metilación , Metiltransferasas/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas
6.
Mol Cell ; 39(3): 333-45, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20705237

RESUMEN

The replication protein A complex (RPA) plays a crucial role in DNA replication and damage response. However, it is not known whether this complex is regulated by the SUMOylation pathway. Here, we show that the 70 kDa subunit of RPA (RPA70) associates with a Sentrin/SUMO-specific protease, SENP6, in the nucleus to maintain RPA70 in a hypoSUMOylated state during S phase. Campothecin (CPT), an inducer of replication stress, dissociates SENP6 from RPA70, allowing RPA70 to be modified by a small ubiquitin-like modifier 2/3 (SUMO-2/3). RPA70 SUMOylation facilitates recruitment of Rad51 to the DNA damage foci to initiate DNA repair through homologous recombination (HR). Cell lines that expressed a RPA70 mutant that cannot be SUMOylated are defective in HR and have a marked increase in sensitivity to CPT. These results demonstrate that SUMOylation status of RPA70 plays a critical role in the regulation of DNA repair through homologous recombination.


Asunto(s)
Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Fase S/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Línea Celular , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Humanos , Complejos Multienzimáticos/genética , Mutación , Recombinación Genética/fisiología , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitinas/genética
7.
EMBO J ; 29(15): 2598-610, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20588252

RESUMEN

Repair of DNA double-stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non-homologous end-joining (NHEJ) or error-free homologous recombination. NHEJ precedes either by a classic, Lig4-dependent process (C-NHEJ) or an alternative, Lig4-independent one (A-NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere-binding proteins are recognized as DSBs. In this report, we studied which end-joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end-to-end chromosome fusions mediated by the C-NHEJ pathway. In contrast, removal of Tpp1-Pot1a/b initiated robust chromosome fusions that are mediated by A-NHEJ. C-NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A-NHEJ is a major pathway to process dysfunctional telomeres.


Asunto(s)
Reparación del ADN , Telómero , Animales , Antígenos Nucleares/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Autoantígeno Ku , Ratones , Ratones Noqueados , Complejo Shelterina , Proteínas de Unión a Telómeros , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
8.
J Biol Chem ; 283(28): 19478-88, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18480059

RESUMEN

Histone-modifying enzymes play a critical role in modulating chromatin dynamics. In this report we demonstrate that one of these enzymes, PR-Set7, and its corresponding histone modification, the monomethylation of histone H4 lysine 20 (H4K20), display a distinct cell cycle profile in mammalian cells: low at G1, increased during late S phase and G2, and maximal from prometaphase to anaphase. The lack of PR-Set7 and monomethylated H4K20 resulted in a number of aberrant phenotypes in several different mammalian cell types. These include the inability of cells to progress past G2, global chromosome condensation failure, aberrant centrosome amplification, and substantial DNA damage. By employing a catalytically dead dominant negative PR-Set7 mutant, we discovered that its mono-methyltransferase activity was required to prevent these phenotypes. Importantly, we demonstrate that all of the aberrant phenotypes associated with the loss of PR-Set7 enzymatic function occur independently of p53. Collectively, our findings demonstrate that PR-Set7 enzymatic activity is essential for mammalian cell cycle progression and for the maintenance of genomic stability, most likely by monomethylating histone H4K20. Our results predict that alterations of this pathway could result in gross chromosomal aberrations and aneuploidy.


Asunto(s)
Ensamble y Desensamble de Cromatina , Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Interfase , Aneuploidia , Animales , Centrosoma/metabolismo , Centrosoma/patología , Cromosomas Humanos/metabolismo , Daño del ADN , Células HeLa , Humanos , Ratones , Proteína p53 Supresora de Tumor/metabolismo
9.
Cell Div ; 1: 19, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16945145

RESUMEN

To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs), through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR), during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK) kinases ATM (mutated in ataxia telangiectasia), ATR (ATM and Rad3-related kinase), and the DNA-dependent protein kinase (DNA-PK) activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR) that utilizes an undamaged sister chromatid template (or homologous chromosome) and non- homologous end joining (NHEJ), an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos). The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1) in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response.

10.
Proc Natl Acad Sci U S A ; 103(9): 3310-5, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16492765

RESUMEN

p53-binding protein 1 (53BP1) participates in the cellular response to DNA double-stranded breaks where it associates with various DNA repair/cell cycle factors including the H2AX histone variant. Mice deficient for 53BP1 (53BP1(-/-)) are sensitive to ionizing radiation and immunodeficient because of impaired Ig heavy chain class switch recombination. Here we show that, as compared with p53(-/-) mice, 53BP1(-/-)/p53(-/-) animals more rapidly develop tumors, including T cell lymphomas and, at lower frequency, B lineage lymphomas, sarcomas, and teratomas. In addition, T cells from animals deficient for both 53BP1 and p53 (53BP1(-/-)/p53(-/-)) display elevated levels of genomic instability relative to T cells deficient for either 53BP1 or p53 alone. In contrast to p53(-/-) T cell lymphomas, which routinely display aneuploidy but not translocations, 53BP1(-/-)/p53(-/-) thymic lymphomas fall into two distinct cytogenetic categories, with many harboring clonal translocations (40%) and the remainder showing aneuploidy (60%). We propose that 53BP1, in the context of p53 deficiency, suppresses T cell lymphomagenesis through its roles in both cell-cycle checkpoints and double-stranded break repair.


Asunto(s)
Inestabilidad Genómica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma/genética , Linfoma/patología , Fosfoproteínas/metabolismo , Neoplasias del Timo/metabolismo , Neoplasias del Timo/patología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Proteínas Cromosómicas no Histona , Cromosomas de los Mamíferos/genética , Citosol/metabolismo , Proteínas de Unión al ADN , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Linfoma/metabolismo , Ratones , Ratones Noqueados , Mutación/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Tasa de Supervivencia , Neoplasias del Timo/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína 1 de Unión al Supresor Tumoral P53
11.
Mol Cell ; 21(2): 201-14, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16427010

RESUMEN

Histone H2AX promotes DNA double-strand break (DSB) repair and immunoglobulin heavy chain (IgH) class switch recombination (CSR) in B-lymphocytes. CSR requires activation-induced cytidine deaminase (AID) and involves joining of DSB intermediates by end joining. We find that AID-dependent IgH locus chromosome breaks occur at high frequency in primary H2AX-deficient B cells activated for CSR and that a substantial proportion of these breaks participate in chromosomal translocations. Moreover, activated B cells deficient for ATM, 53BP1, or MDC1, which interact with H2AX during the DSB response, show similarly increased IgH locus breaks and translocations. Thus, our findings implicate a general role for these factors in promoting end joining and thereby preventing DSBs from progressing into chromosomal breaks and translocations. As cellular p53 status does not markedly influence the frequency of such events, our results also have implications for how p53 and the DSB response machinery cooperate to suppress generation of lymphomas with oncogenic translocations.


Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , Histonas/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Rotura Cromosómica , Citidina Desaminasa/metabolismo , Histonas/deficiencia , Histonas/genética , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/genética , Hibridación Fluorescente in Situ , Técnicas In Vitro , Ratones , Ratones Noqueados , Translocación Genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Cell Cycle ; 4(12): 1854-61, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16294047

RESUMEN

p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. Although little is known about the biochemical functions of 53BP1, the protein possesses several motifs that are likely important for its role as a DNA damage response element. This includes two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. Here we show that a glycine-arginine rich (GAR) stretch of 53BP1 lying upstream of the Tudor motifs is methylated. We demonstrate that arginine residues within this region are important for asymmetric methylation by the PRMT1 methyltransferase. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. Thus, although Tudor domains bind methylated proteins, 53BP1 homo-oligomerization occurs independently of Tudor function. Lastly, we find that deficiencies in 53BP1 generate a "hyper-rec" phenotype. Collectively, these data provide new insight into 53BP1, an important component in maintaining genomic stability.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Arginina/metabolismo , Biopolímeros/metabolismo , Daño del ADN/genética , Glicina/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Metilación , Datos de Secuencia Molecular , Fosfoproteínas/química , Estructura Terciaria de Proteína , Recombinación Genética , Células Madre/citología , Proteína 1 de Unión al Supresor Tumoral P53
13.
Sci Aging Knowledge Environ ; 2004(22): pe24, 2004 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-15175499

RESUMEN

DNA damage response mechanisms help ensure the fidelity of chromosomal transmission, and the failure of such mechanisms might lead to premature aging and cancer. A new report has established that casein kinase 2 (CK2), a protein that functions in diverse cellular processes, controls the activity of the DNA repair protein XRCC1. These results indicate that CK2 is a key participant in the cellular response to DNA damage.


Asunto(s)
Reparación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Quinasa de la Caseína II , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
14.
Nat Immunol ; 5(5): 481-7, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15077110

RESUMEN

The mammalian protein 53BP1 is activated in many cell types in response to genotoxic stress, including DNA double-strand breaks (DSBs). We now examine potential functions for 53BP1 in the specific genomic alterations that occur in B lymphocytes. Although 53BP1 was dispensable for V(D)J recombination and somatic hypermutation (SHM), the processes by which immunoglobulin (Ig) variable region exons are assembled and mutated, it was required for Igh class-switch recombination (CSR), the recombination and deletion process by which Igh constant region genes are exchanged. When stimulated to undergo CSR, 53BP1-deficient cells exhibited no defect in C(H) germline transcription or AID expression, however these cells had a profound decrease in switch junctions. The current findings, in combination with the known 53BP1 functions and how it is activated, implicate the DNA damage response to DSBs in the joining phase of class-switch recombination.


Asunto(s)
Proteínas Portadoras/metabolismo , Reparación del ADN/fisiología , Cambio de Clase de Inmunoglobulina/genética , Regiones Constantes de Inmunoglobulina/genética , Péptidos y Proteínas de Señalización Intracelular , Fosfoproteínas , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas Portadoras/genética , Daño del ADN , Cambio de Clase de Inmunoglobulina/inmunología , Ratones , Ratones Noqueados
15.
J Biol Chem ; 278(17): 14971-7, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12578828

RESUMEN

p53-binding protein-1 (53BP1) is phosphorylated in response to DNA damage and rapidly relocalizes to presumptive sites of DNA damage along with Mre11 and the phosphorylated histone 2A variant, gamma-H2AX. 53BP1 associates with the BRCA1 tumor suppressor, and knock-down experiments with small interfering RNA have revealed a role for the protein in the checkpoint response to DNA damage. By generating mice defective in m53BP1 (m53BP1(tr/tr)), we have created an animal model to further explore its biochemical and genetic roles in vivo. We find that m53BP1(tr/tr) animals are growth-retarded and show various immune deficiencies including a specific reduction in thymus size and T cell count. Consistent with a role in responding to DNA damage, we find that m53BP1(tr/tr) mice are sensitive to ionizing radiation (gamma-IR), and cells from these animals exhibit chromosomal abnormalities consistent with defects in DNA repair. Thus, 53BP1 is a critical element in the DNA damage response and plays an integral role in maintaining genomic stability.


Asunto(s)
Proteínas Portadoras/fisiología , Aberraciones Cromosómicas/efectos de la radiación , Reparación del ADN/genética , Péptidos y Proteínas de Señalización Intracelular , Fosfoproteínas , Transporte Activo de Núcleo Celular , Animales , Enfermedades Autoinmunes/genética , Proteína BRCA1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona , Daño del ADN/genética , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Genoma , Crecimiento/genética , Ratones , Ratones Noqueados , Secuencias Repetidas Terminales , Proteína 1 de Unión al Supresor Tumoral P53
16.
Nat Cell Biol ; 4(12): 993-7, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12447390

RESUMEN

Activation of the ataxia telangiectasia mutated (ATM) kinase triggers diverse cellular responses to ionizing radiation (IR), including the initiation of cell cycle checkpoints. Histone H2AX, p53 binding-protein 1 (53BP1) and Chk2 are targets of ATM-mediated phosphorylation, but little is known about their roles in signalling the presence of DNA damage. Here, we show that mice lacking either H2AX or 53BP1, but not Chk2, manifest a G2-M checkpoint defect close to that observed in ATM(-/-) cells after exposure to low, but not high, doses of IR. Moreover, H2AX regulates the ability of 53BP1 to efficiently accumulate into IR-induced foci. We propose that at threshold levels of DNA damage, H2AX-mediated concentration of 53BP1 at double-strand breaks is essential for the amplification of signals that might otherwise be insufficient to prevent entry of damaged cells into mitosis.


Asunto(s)
Proteínas Portadoras/genética , Daño del ADN/genética , Fase G2/genética , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular , Mitosis/genética , Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Animales , Línea Celular , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Fase G2/fisiología , Regulación de la Expresión Génica , Ratones , Mitosis/fisiología , Fosforilación , Proteínas Quinasas/genética , Proteína 1 de Unión al Supresor Tumoral P53
17.
Mol Cell Biol ; 22(24): 8635-47, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12446782

RESUMEN

snm1 mutants of Saccharomyces cerevisiae have been shown to be specifically sensitive to DNA interstrand crosslinking agents but not sensitive to monofunctional alkylating agents, UV, or ionizing radiation. Five homologs of SNM1 have been identified in the mammalian genome and are termed SNM1, SNM1B, Artemis, ELAC2, and CPSF73. To explore the functional role of human Snm1 in response to DNA damage, we characterized the cellular distribution and dynamics of human Snm1 before and after exposure to DNA-damaging agents. Human Snm1 was found to localize to the cell nucleus in three distinct patterns. A particular cell showed diffuse nuclear staining, multiple nuclear foci, or one or two larger bodies confined to the nucleus. Upon exposure to ionizing radiation or an interstrand crosslinking agent, the number of cells exhibiting Snm1 bodies was reduced, while the population of cells with foci increased dramatically. Indirect immunofluorescence studies also indicated that the human Snm1 protein colocalized with 53BP1 before and after exposure to ionizing radiation, and a physical interaction was confirmed by coimmunoprecipitation assays. Furthermore, human Snm1 foci formed after ionizing radiation were largely coincident with foci formed by human Mre11 and to a lesser extent with those formed by BRCA1, but not with those formed by human Rad51. Finally, we mapped a region of human Snm1 of approximately 220 amino acids that was sufficient for focus formation when attached to a nuclear localization signal. Our results indicate a novel function for human Snm1 in the cellular response to double-strand breaks formed by ionizing radiation.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/efectos de los fármacos , ADN/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/metabolismo , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína BRCA1/metabolismo , Proteínas Portadoras/genética , Línea Celular , Núcleo Celular/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Citometría de Flujo , Genes Reporteros , Humanos , Microscopía Fluorescente , Proteínas Nucleares/genética , Unión Proteica , Recombinasa Rad51 , Radiación Ionizante , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína 1 de Unión al Supresor Tumoral P53
18.
Science ; 298(5597): 1435-8, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12364621

RESUMEN

53BP1 binds to the tumor suppressor protein p53 and has a potential role in DNA damage responses. We used small interfering RNA (siRNA) directed against 53BP1 in mammalian cells to demonstrate that 53BP1 is a key transducer of the DNA damage checkpoint signal. 53BP1 was required for p53 accumulation, G2-M checkpoint arrest, and the intra-S-phase checkpoint in response to ionizing radiation. 53BP1 played a partially redundant role in phosphorylation of the downstream checkpoint effector proteins Brca1 and Chk2 but was required for the formation of Brca1 foci in a hierarchical branched pathway for the recruitment of repair and signaling proteins to sites of DNA damage.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , Fase G2 , Péptidos y Proteínas de Señalización Intracelular , Mitosis , Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Fase S , Proteína BRCA1/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , ADN/biosíntesis , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño , Radiación Ionizante , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...