Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
bioRxiv ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38712187

Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.

2.
Commun Biol ; 6(1): 686, 2023 07 03.
Article En | MEDLINE | ID: mdl-37400623

Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better markers. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers. CRIP1 expression was found highly upregulated by both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.


Leiomyoma , Myometrium , Female , Humans , Myometrium/metabolism , Cysteine/metabolism , Stem Cells/metabolism , Leiomyoma/genetics , Leiomyoma/metabolism
3.
bioRxiv ; 2023 Mar 18.
Article En | MEDLINE | ID: mdl-36993447

Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, which are benign tumors that develop in the myometrium of most reproductive age women, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better discerning markers for more rigorous downstream analyses. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers capable of further enriching for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers, including SUSD2. CRIP1 expression was found highly upregulated in both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.

4.
JCI Insight ; 7(20)2022 10 24.
Article En | MEDLINE | ID: mdl-36066972

Uterine fibroids (leiomyomas) affect Black women disproportionately compared with women of other races and ethnicities in terms of prevalence, incidence, and severity of symptoms. The causes of this racial disparity are essentially unknown. We hypothesized that myometria of Black women are more susceptible to developing fibroids, and we examined the transcriptomic and DNA methylation profiles of myometria and fibroids from Black and White women for comparison. Myometrial samples cluster by race in both their transcriptome and DNA methylation profiles, whereas fibroid samples only cluster by race in the latter. More differentially expressed genes (DEGs) were detected in the Black and White myometrial sample comparison than in the fibroid comparison. Leiomyoma gene set expression analysis identified 4 clusters of DEGs, including a cluster of 24 genes with higher expression in myometrial samples from Black women. One of the DEGs in this group, von Willibrands factor (VWF), was significantly hypomethylated in both myometrial samples from Black women and in all fibroids at 2 CpG probes that are near a putative enhancer site and that are correlated with VWF expression levels. These results suggest that the molecular basis for the disparity in fibroid disease between Black and White women could be found in the myometria before fibroid development and not in the fibroids themselves.


Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/genetics , Uterine Neoplasms/epidemiology , Uterine Neoplasms/metabolism , Transcriptome , Epigenome , von Willebrand Factor/genetics , Leiomyoma/genetics , Leiomyoma/epidemiology , Leiomyoma/metabolism
5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article En | MEDLINE | ID: mdl-33807176

Uterine fibroid tissues are often compared to their matched myometrium in an effort to understand their pathophysiology, but it is not clear whether the myometria of uterine fibroid patients represent truly non-disease control tissues. We analyzed the transcriptomes of myometrial samples from non-fibroid patients (M) and compared them with fibroid (F) and matched myometrial (MF) samples to determine whether there is a phenotypic difference between fibroid and non-fibroid myometria. Multidimensional scaling plots revealed that M samples clustered separately from both MF and F samples. A total of 1169 differentially expressed genes (DEGs) (false discovery rate < 0.05) were observed in the MF comparison with M. Overrepresented Gene Ontology terms showed a high concordance of upregulated gene sets in MF compared to M, particularly extracellular matrix and structure organization. Gene set enrichment analyses showed that the leading-edge genes from the TGFß signaling and inflammatory response gene sets were significantly enriched in MF. Overall comparison of the three tissues by three-dimensional principal component analyses showed that M, MF, and F samples clustered separately from each other and that a total of 732 DEGs from F vs. M were not found in the F vs. MF, which are likely understudied in the pathogenesis of uterine fibroids and could be key genes for future investigation. These results suggest that the transcriptome of fibroid-associated myometrium is different from that of non-diseased myometrium and that fibroid studies should consider using both matched myometrium and non-diseased myometrium as controls.


Leiomyoma/genetics , Myometrium/pathology , Uterus/pathology , Adult , Female , Gene Expression Profiling/methods , Genetic Association Studies/methods , Genotype , Humans , Leiomyoma/pathology , Middle Aged , Myometrium/metabolism , Phenotype , Principal Component Analysis/methods , Transcriptome/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterus/metabolism
6.
Cell Rep ; 31(6): 107631, 2020 05 12.
Article En | MEDLINE | ID: mdl-32402291

The mesenchymal to epithelial transition (MET) is thought to be involved in the maintenance, repair, and carcinogenesis of the fallopian tube (oviduct) and uterine epithelium. However, conclusive evidence for the conversion of mesenchymal cells to epithelial cells in these organs is lacking. Using embryonal cell lineage tracing with reporters driven by mesenchymal cell marker genes of the female reproductive tract (AMHR2, CSPG4, and PDGFRß), we show that these reporters are also expressed by some oviductal and uterine epithelial cells at birth. These mesenchymal reporter-positive epithelial cells are maintained in adult mice across multiple pregnancies, respond to ovarian hormones, and form organoids. However, no labeled epithelial cells are present in any oviductal or uterine epithelia when mesenchymal cell labeling was induced in adult mice. Organoids developed from mice labeled in adulthood were also negative for mesenchymal reporters. Collectively, our work found no definitive evidence of MET in the adult fallopian tube and uterine epithelium.


Epithelial-Mesenchymal Transition/genetics , Fallopian Tubes/physiopathology , Uterus/physiopathology , Animals , Cell Differentiation , Female , Humans , Mice
7.
Hum Reprod ; 35(1): 44-57, 2020 01 01.
Article En | MEDLINE | ID: mdl-31913469

STUDY QUESTION: Can endometrial stromal stem/progenitor cell markers, SUSD2 and CD146/CD140b, enrich for human myometrial and fibroid stem/progenitor cells? SUMMARY ANSWER: SUSD2 enriches for myometrial and fibroid cells that have mesenchymal stem cell (MSC) characteristics and can also be induced to decidualise. WHAT IS KNOWN ALREADY: Mesenchymal stem-like cells have been separately characterised in the endometrial stroma and myometrium and may contribute to diseases in their respective tissues. STUDY DESIGN, SIZE, DURATION: Normal myometrium, fibroids and endometrium were collected from hysterectomies with informed consent. Primary cells or tissues were used from at least three patient samples for each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Flow cytometry, immunohistochemistry and immunofluorescence were used to characterise tissues. In vitro colony formation in normoxic and hypoxic conditions, MSC lineage differentiation (osteogenic and adipogenic) and decidualisation were used to assess stem cell activity. Xenotransplantation into immunocompromised mice was used to determine in vivo stem-like activity. Endpoint measures included quantitative PCR, colony formation, trichrome, Oil Red O and alkaline phosphatase activity staining. MAIN RESULTS AND THE ROLE OF CHANCE: CD146+CD140b+ and/or SUSD2+ myometrial and fibroid cells were located in the perivascular region and formed more colonies in vitro compared to control cells and differentiated down adipogenic and osteogenic mesenchymal lineages in vitro. SUSD2+ myometrial cells had greater in vitro decidualisation potential, and SUSD2+ fibroid cells formed larger tumours in vivo compared to control cells. LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Markers used in this study enrich for cells with stem/progenitor cell activity; however, they do not distinguish stem from progenitor cells. SUSD2+ myometrial cells express markers of decidualisation when treated in vitro, but in vivo assays are needed to fully demonstration their ability to decidualise. WIDER IMPLICATIONS OF THE FINDINGS: These results suggest a possible common MSC for the endometrial stroma and myometrium, which could be the tumour-initiating cell for uterine fibroids. STUDY FUNDING/COMPETING INTEREST(S): These studies were supported by NIH grants to JMT (R01OD012206) and to ALP (F32HD081856). The authors certify that we have no conflicts of interest to disclose.


Leiomyoma , Mesenchymal Stem Cells , Animals , Endometrium , Female , Humans , Mice , Myometrium , Stem Cells , Stromal Cells
8.
Mol Cancer Ther ; 17(9): 1995-2003, 2018 09.
Article En | MEDLINE | ID: mdl-29898896

Endometrial adenocarcinoma (EndoCA) is the most common gynecologic cancer type in the United States, and its incidence is increasing. The majority of patients are disease-free after surgical resection of stage I tumors, which is often followed by radiotherapy, but most patients with advanced disease recur and have a poor prognosis, largely because the tumors become refractory to cytotoxic chemotherapies. PTEN, a commonly mutated tumor suppressor in EndoCAs, is well known for its ability to inhibit the AKT/mTOR signaling pathway. Nuclear functions for PTEN have been proposed as well, but whether those affect EndoCA development, progression, or outcomes is not well understood. Using immunohistochemistry, nuclear PTEN expression was observed in approximately half of EndoCA patient tumors, independent of grade and cytoplasmic PTEN expression. Higher levels of the DNA damage response (DDR) marker, γH2AX, were observed by immunohistochemistry and immunofluorescence in human EndoCA tumor sections that were PTEN-negative, in murine EndoCA tissues that were genetically modified to be PTEN-null, and in Ishikawa EndoCA cells, which do not express endogenous PTEN. Overexpression of exogenous PTEN-WT or PTEN-NLS, a modified PTEN with an added nuclear localization signal, significantly improved both DDR and G2-M transition in Ishikawa cells treated with a DNA-damaging agent. Whereas PARP inhibition with Olaparib was not as effective in Ishikawa cells expressing native or PTEN-NLS, inhibition with Talazoparib was not affected by PTEN overexpression. These results suggest that nuclear PTEN subcellular localization in human EndoCA could be diagnostic when considering DDR therapeutic intervention. Mol Cancer Ther; 17(9); 1995-2003. ©2018 AACR.


Adenocarcinoma/metabolism , Cell Nucleus/metabolism , DNA Damage , Endometrial Neoplasms/metabolism , PTEN Phosphohydrolase/biosynthesis , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Animals , Cell Line, Tumor , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/therapy , Female , Histones/metabolism , Humans , Immunohistochemistry , Mice, Knockout , Mice, Transgenic , Signal Transduction
...