Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(19): 9073-9079, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737821

RESUMEN

In the room-temperature magnetoelectric multiferroic BiFeO3, the noncollinear antiferromagnetic state is coupled to the ferroelectric order, opening applications for low-power electric-field-controlled magnetic devices. While several strategies have been explored to simplify the ferroelectric landscape, here we directly stabilize a single-domain ferroelectric and spin cycloid state in epitaxial BiFeO3 (111) thin films grown on orthorhombic DyScO3 (011). Comparing them with films grown on SrTiO3 (111), we identify anisotropic in-plane strain as a powerful handle for tailoring the single antiferromagnetic state. In this single-domain multiferroic state, we establish the thickness limit of the coexisting electric and magnetic orders and directly visualize the suppression of the spin cycloid induced by the magnetoelectric interaction below the ultrathin limit of 1.4 nm. This as-grown single-domain multiferroic configuration in BiFeO3 thin films opens an avenue both for fundamental investigations and for electrically controlled noncollinear antiferromagnetic spintronics.

2.
ACS Nano ; 16(9): 14007-14016, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36068013

RESUMEN

We report on large spin-filtering effects in epitaxial graphene-based spin valves, strongly enhanced in our specific multilayer case. Our results were obtained by the effective association of chemical vapor deposited (CVD) multilayer graphene with a high quality epitaxial Ni(111) ferromagnetic spin source. We highlight that the Ni(111) spin source electrode crystallinity and metallic state are preserved and stabilized by multilayer graphene CVD growth. Complete nanometric spin valve junctions are fabricated using a local probe indentation process, and spin properties are extracted from the graphene-protected ferromagnetic electrode through the use of a reference Al2O3/Co spin analyzer. Strikingly, spin-transport measurements in these structures give rise to large negative tunnel magneto-resistance TMR = -160%, pointing to a particularly large spin polarization for the Ni(111)/Gr interface PNi/Gr, evaluated up to -98%. We then discuss an emerging physical picture of graphene-ferromagnet systems, sustained both by experimental data and ab initio calculations, intimately combining efficient spin filtering effects arising (i) from the bulk band structure of the graphene layers purifying the extracted spin direction, (ii) from the hybridization effects modulating the amplitude of spin polarized scattering states over the first few graphene layers at the interface, and (iii) from the epitaxial interfacial matching of the graphene layers with the spin-polarized Ni surface selecting well-defined spin polarized channels. Importantly, these main spin selection effects are shown to be either cooperating or competing, explaining why our transport results were not observed before. Overall, this study unveils a path to harness the full potential of low Resitance.Area (RA) graphene interfaces in efficient spin-based devices.

3.
ACS Nano ; 15(6): 9775-9781, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34013720

RESUMEN

Multiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices. However, a compact voltage-controlled, on demand reconfigurable magnonic system has yet to be shown. Here, we introduce the combination of multiferroics with ferromagnets in a fully epitaxial heterostructure to achieve such voltage-controlled and reconfigurable magnonic systems. Imprinting a remnant electrical polarization in thin multiferroic BiFeO3 with a periodicity of 500 nm yields a modulation of the effective magnetic field in the micrometer-scale, ferromagnetic La2/3Sr1/3MnO3 magnonic waveguide. We evidence the magnetoelectric coupling by characterizing the spin wave propagation spectrum in this artificial, voltage induced, magnonic crystal and demonstrate the occurrence of a robust magnonic band gap with >20 dB rejection.

4.
ACS Nano ; 15(4): 7279-7289, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33755422

RESUMEN

We present a growth process relying on pulsed laser deposition for the elaboration of complex van der Waals heterostructures on large scales, at a 400 °C CMOS-compatible temperature. Illustratively, we define a multilayer quantum well geometry through successive in situ growths, leading to WSe2 being encapsulated into WS2 layers. The structural constitution of the quantum well geometry is confirmed by Raman spectroscopy combined with transmission electron microscopy. The large-scale high homogeneity of the resulting 2D van der Waals heterostructure is also validated by macro- and microscale Raman mappings. We illustrate the benefit of this integrative in situ approach by showing the structural preservation of even the most fragile 2D layers once encapsulated in a van der Waals heterostructure. Finally, we fabricate a vertical tunneling device based on these large-scale layers and discuss the clear signature of electronic transport controlled by the quantum well configuration with ab initio calculations in support. The flexibility of this direct growth approach, with multilayer stacks being built in a single run, allows for the definition of complex 2D heterostructures barely accessible with usual exfoliation or transfer techniques of 2D materials. Reminiscent of the III-V semiconductors' successful exploitation, our approach unlocks virtually infinite combinations of large 2D material families in any complex van der Waals heterostructure design.

5.
Nat Commun ; 9(1): 3355, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135521

RESUMEN

A magnetic material combining low losses and large perpendicular magnetic anisotropy (PMA) is still a missing brick in the magnonic and spintronic fields. We report here on the growth of ultrathin Bismuth doped Y3Fe5O12 (BiYIG) films on Gd3Ga5O12 (GGG) and substituted GGG (sGGG) (111) oriented substrates. A fine tuning of the PMA is obtained using both epitaxial strain and growth-induced anisotropies. Both spontaneously in-plane and out-of-plane magnetized thin films can be elaborated. Ferromagnetic Resonance (FMR) measurements demonstrate the high-dynamic quality of these BiYIG ultrathin films; PMA films with Gilbert damping values as low as 3 × 10-4 and FMR linewidth of 0.3 mT at 8 GHz are achieved even for films that do not exceed 30 nm in thickness. Moreover, we measure inverse spin hall effect (ISHE) on Pt/BiYIG stacks showing that the magnetic insulator's surface is transparent to spin current, making it appealing for spintronic applications.

6.
Nat Commun ; 8: 14736, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368007

RESUMEN

In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.


Asunto(s)
Electricidad , Hierro/química , Redes Neurales de la Computación , Factores de Tiempo
7.
Nano Lett ; 15(4): 2533-41, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25768912

RESUMEN

The electric field control of functional properties is a crucial goal in oxide-based electronics. Nonvolatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here, we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca(1-x)Ce(x)MnO3, thus providing insight on how interface-engineering can enhance these switching effects.

8.
ACS Nano ; 7(6): 5385-90, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23647323

RESUMEN

Ferroelectric tunnel junctions enable a nondestructive readout of the ferroelectric state via a change of resistance induced by switching the ferroelectric polarization. We fabricated submicrometer solid-state ferroelectric tunnel junctions based on a recently discovered polymorph of BiFeO3 with giant axial ratio ("T-phase"). Applying voltage pulses to the junctions leads to the highest resistance changes (OFF/ON ratio >10,000) ever reported with ferroelectric tunnel junctions. Along with the good retention properties, this giant effect reinforces the interest in nonvolatile memories based on ferroelectric tunnel junctions. We also show that the changes in resistance scale with the nucleation and growth of ferroelectric domains in the ultrathin BiFeO3 (imaged by piezoresponse force microscopy), thereby suggesting potential as multilevel memory cells and memristors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...