Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408243

RESUMEN

The demonstration that F1FO (F)-ATP synthase and adenine nucleotide translocase (ANT) can form Ca2+-activated, high-conductance channels in the inner membrane of mitochondria from a variety of eukaryotes led to renewed interest in the permeability transition (PT), a permeability increase mediated by the PT pore (PTP). The PT is a Ca2+-dependent permeability increase in the inner mitochondrial membrane whose function and underlying molecular mechanisms have challenged scientists for the last 70 years. Although most of our knowledge about the PTP comes from studies in mammals, recent data obtained in other species highlighted substantial differences that could be perhaps attributed to specific features of F-ATP synthase and/or ANT. Strikingly, the anoxia and salt-tolerant brine shrimp Artemia franciscana does not undergo a PT in spite of its ability to take up and store Ca2+ in mitochondria, and the anoxia-resistant Drosophila melanogaster displays a low-conductance, selective Ca2+-induced Ca2+ release channel rather than a PTP. In mammals, the PT provides a mechanism for the release of cytochrome c and other proapoptotic proteins and mediates various forms of cell death. In this review, we cover the features of the PT (or lack thereof) in mammals, yeast, Drosophila melanogaster, Artemia franciscana and Caenorhabditis elegans, and we discuss the presence of the intrinsic pathway of apoptosis and of other forms of cell death. We hope that this exercise may help elucidate the function(s) of the PT and its possible role in evolution and inspire further tests to define its molecular nature.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Mamíferos/metabolismo
2.
Cell Calcium ; 111: 102719, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963206

RESUMEN

The mitochondrial Permeability Transition Pore (PTP) can be defined as a Ca2+ activated mega-channel involved in mitochondrial damage and cell death, making its inhibition a hallmark for therapeutic purposes in many PTP-related paradigms. Although long-lasting PTP openings have been widely studied, the physiological implications of transient openings (also called "flickering" behavior) are still poorly understood. The flickering activity was suggested to play a role in the regulation of Ca2+ and ROS homeostasis, and yet this hypothesis did not reach general consensus. This state of affairs might arise from the lack of unquestionable experimental evidence, due to limitations of the available techniques for capturing transient PTP activity and to a still partial understanding of its molecular identity. In this review we will focus on possible implications of the PTP in physiology, in particular its role as a Ca2+ release pathway, discussing the consequences of its forced inhibition. We will also consider the recent hypothesis of the existence of more permeability pathways and their potential involvement in mitochondrial physiology.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo , Muerte Celular , Homeostasis , Calcio/metabolismo
3.
FEBS J ; 289(22): 7051-7074, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34710270

RESUMEN

Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.


Asunto(s)
Poro de Transición de la Permeabilidad Mitocondrial , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Permeabilidad , Adenosina Trifosfato/metabolismo , Calcio/metabolismo
4.
Molecules ; 26(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34770872

RESUMEN

The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Humanos
5.
Nat Commun ; 12(1): 4835, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376679

RESUMEN

F-ATP synthase is a leading candidate as the mitochondrial permeability transition pore (PTP) but the mechanism(s) leading to channel formation remain undefined. Here, to shed light on the structural requirements for PTP formation, we test cells ablated for g, OSCP and b subunits, and ρ0 cells lacking subunits a and A6L. Δg cells (that also lack subunit e) do not show PTP channel opening in intact cells or patch-clamped mitoplasts unless atractylate is added. Δb and ΔOSCP cells display currents insensitive to cyclosporin A but inhibited by bongkrekate, suggesting that the adenine nucleotide translocator (ANT) can contribute to channel formation in the absence of an assembled F-ATP synthase. Mitoplasts from ρ0 mitochondria display PTP currents indistinguishable from their wild-type counterparts. In this work, we show that peripheral stalk subunits are essential to turn the F-ATP synthase into the PTP and that the ANT provides mitochondria with a distinct permeability pathway.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Calcio/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Línea Celular Tumoral , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ionóforos de Protónes/farmacología
6.
EBioMedicine ; 61: 103050, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33045469

RESUMEN

BACKGROUND: Mutations of the mitochondrial protein paraplegin cause hereditary spastic paraplegia type 7 (SPG7), a so-far untreatable degenerative disease of the upper motoneuron with still undefined pathomechanism. The intermittent mitochondrial permeability transition pore (mPTP) opening, called flickering, is an essential process that operates to maintain mitochondrial homeostasis by reducing intra-matrix Ca2+ and reactive oxygen species (ROS) concentration, and is critical for efficient synaptic function. METHODS: We use a fluorescence-based approach to measure mPTP flickering in living cells and biochemical and molecular biology techniques to dissect the pathogenic mechanism of SPG7. In the SPG7 animal model we evaluate the potential improvement of the motor defect, neuroinflammation and neurodegeneration by means of an mPTP inducer, the benzodiazepine Bz-423. FINDINGS: We demonstrate that paraplegin is required for efficient transient opening of the mPTP, that is impaired in both SPG7 patients-derived fibroblasts and primary neurons from Spg7-/- mice. We show that dysregulation of mPTP opening at the pre-synaptic terminal impairs neurotransmitter release leading to ineffective synaptic transmission. Lack of paraplegin impairs mPTP flickering by a mechanism involving increased expression and activity of sirtuin3, which promotes deacetylation of cyclophilin D, thus hampering mPTP opening. Pharmacological treatment with Bz-423, which bypasses the activity of CypD, normalizes synaptic transmission and rescues the motor impairment of the SPG7 mouse model. INTERPRETATION: mPTP targeting opens a new avenue for the potential therapy of this form of spastic paraplegia. FUNDING: Telethon Foundation grant (TGMGCSBX16TT); Dept. of Defense, US Army, grant W81XWH-18-1-0001.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Metaloendopeptidasas/genética , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Apoptosis/genética , Transporte Biológico , Calcio/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Edición Génica , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial , Metaloendopeptidasas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Neuronas/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Vesículas Sinápticas/metabolismo
7.
Cell Rep ; 32(9): 108095, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877677

RESUMEN

The mitochondrial permeability transition pore (PTP) is a Ca2+-activated channel that plays a key role in cell death. Thiol oxidation facilitates PTP opening, yet the targets and molecular mechanisms still await a definition. Here, we investigate the role of C141 of F-ATP synthase oligomycin sensitivity conferral protein (OSCP) subunit in PTP modulation by oxidation. We find that the OSCP C141S mutation confers resistance to PTP opening and cell death by diamide and MitoParaquat only when cyclophilin D (CyPD) has been ablated, a protective role that can be explained by CyPD shielding C141 from oxidants. The mutation decreases apoptosis in zebrafish embryos, indicating that this OSCP residue is involved in development. Site-directed mutagenesis in yeast suggests that other conserved cysteines in the α, γ, and c subunits of F-ATP synthase are not involved in PTP modulation. Thus, OSCP provides a strategic site that regulates PTP opening by the interplay between CyPD (un)binding and thiol oxidation-reduction.


Asunto(s)
Cisteína/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Permeabilidad , Humanos
8.
J Mol Cell Cardiol ; 144: 76-86, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32454060

RESUMEN

The mitochondrial permeability transition, an established mechanism for heart diseases, is a long-standing mystery of mitochondrial biology and a prime drug target for cardioprotection. Several hypotheses about its molecular nature have been put forward over the years, and the prevailing view is that permeabilization of the inner mitochondrial membrane follows opening of a high-conductance channel, the permeability transition pore, which is also called mitochondrial megachannel or multiconductance channel. The permeability transition strictly requires matrix Ca2+ and is favored by the matrix protein cyclophilin D, which mediates the inhibitory effects of cyclosporin A. Here we provide a review of the field, with specific emphasis on the possible role of the adenine nucleotide translocator and of the F-ATP synthase in channel formation, and on currently available small molecule inhibitors. While the possible mechanisms through which the adenine nucleotide translocator and the F-ATP synthase might form high-conductance channels remain unknown, reconstitution experiments and site-directed mutagenesis combined to electrophysiology have provided important clues. The hypothesis that more than one protein may act as a permeability transition pore provides a reasonable explanation for current controversies in the field, and holds great promise for the solution of the mystery of the permeability transition.


Asunto(s)
Cardiotónicos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Animales , Biomarcadores , Descubrimiento de Drogas , Ratones , Ratones Noqueados , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Transportadores de Anión Orgánico/química , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Permeabilidad/efectos de los fármacos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
9.
Methods Cell Biol ; 155: 369-379, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183968

RESUMEN

The mitochondrial permeability transition (PT) is an increase in the inner membrane permeability caused by the opening of a Ca2+-activated high-conductance channel, the so-called PT pore (PTP) or mitochondrial megachannel (MMC). Recent data indicate that F-ATP synthase contributes substantially to the generation of the PTP, yet this hypothesis is the matter of controversy. In this chapter, we will describe an approach to study the pore, i.e., the evaluation of mitochondrial swelling by means of a decrease in the absorbance at 540nm. This method should be useful to resolve apparent discrepancies in the literature and help solve emerging issues on the identity of mitochondrial pores.


Asunto(s)
Técnicas Citológicas/métodos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Calcio/metabolismo , Células HEK293 , Humanos , Ratones , Dilatación Mitocondrial , Permeabilidad
10.
Pharmacol Res ; 151: 104548, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759087

RESUMEN

Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.


Asunto(s)
Cardiotónicos/uso terapéutico , Poro de Transición de la Permeabilidad Mitocondrial/antagonistas & inhibidores , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Cardiotónicos/farmacología , Línea Celular , Células Cultivadas , Humanos , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Ratas Sprague-Dawley , Ratas Wistar , Bibliotecas de Moléculas Pequeñas/farmacología
11.
J Biol Chem ; 294(28): 10987-10997, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31160339

RESUMEN

The mitochondrial F-ATP synthase is a complex molecular motor arranged in V-shaped dimers that is responsible for most cellular ATP synthesis in aerobic conditions. In the yeast F-ATP synthase, subunits e and g of the FO sector constitute a lateral domain, which is required for dimer stability and cristae formation. Here, by using site-directed mutagenesis, we identified Arg-8 of subunit e as a critical residue in mediating interactions between subunits e and g, most likely through an interaction with Glu-83 of subunit g. Consistent with this hypothesis, (i) the substitution of Arg-8 in subunit e (eArg-8) with Ala or Glu or of Glu-83 in subunit g (gGlu-83) with Ala or Lys destabilized the digitonin-extracted F-ATP synthase, resulting in decreased dimer formation as revealed by blue-native electrophoresis; and (ii) simultaneous substitution of eArg-8 with Glu and of gGlu-83 with Lys rescued digitonin-stable F-ATP synthase dimers. When tested in lipid bilayers for generation of Ca2+-dependent channels, WT dimers displayed the high-conductance channel activity expected for the mitochondrial megachannel/permeability transition pore, whereas dimers obtained at low digitonin concentrations from the Arg-8 variants displayed currents of strikingly small conductance. Remarkably, double replacement of eArg-8 with Glu and of gGlu-83 with Lys restored high-conductance channels indistinguishable from those seen in WT enzymes. These findings suggest that the interaction of subunit e with subunit g is important for generation of the full-conductance megachannel from F-ATP synthase.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dimerización , Potencial de la Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
FEBS Lett ; 593(13): 1542-1553, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31197821

RESUMEN

Whether the mitochondrial permeability transition pore (PTP), also called mitochondrial megachannel (MMC), originates from the F-ATP synthase is a matter of controversy. This hypothesis is supported both by site-directed mutagenesis of specific residues of F-ATP synthase affecting regulation of the PTP/MMC and by deletion of specific subunits causing dramatic changes in channel conductance. In contrast, human cells lacking an assembled F-ATP synthase apparently display persistence of the PTP. We discuss recent data that shed new light on this controversy, supporting the conclusion that the PTP/MMC originates from a Ca2+ -dependent conformational change in F-ATP synthase allowing its reversible transformation into a high-conductance channel.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Ingeniería de Proteínas
13.
Cell Physiol Biochem ; 50(5): 1840-1855, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30423558

RESUMEN

BACKGROUND/AIMS: The permeability transition pore (PTP) is an unselective, Ca2+-dependent high conductance channel of the inner mitochondrial membrane whose molecular identity has long remained a mystery. The most recent hypothesis is that pore formation involves the F-ATP synthase, which consistently generates Ca2+-activated channels. Available structures do not display obvious features that can accommodate a channel; thus, how the pore can form and whether its activity can be entirely assigned to F-ATP synthase is the matter of debate. In this study, we investigated the role of F-ATP synthase subunits e, g and b in PTP formation. METHODS: Yeast null mutants for e, g and the first transmembrane (TM) α-helix of subunit b were generated and evaluated for mitochondrial morphology (electron microscopy), membrane potential (Rhodamine123 fluorescence) and respiration (Clark electrode). Homoplasmic C23S mutant of subunit a was generated by in vitro mutagenesis followed by biolistic transformation. F-ATP synthase assembly was evaluated by BN-PAGE analysis. Cu2+ treatment was used to induce the formation of F-ATP synthase dimers in the absence of e and g subunits. The electrophysiological properties of F-ATP synthase were assessed in planar lipid bilayers. RESULTS: Null mutants for the subunits e and g display dimer formation upon Cu2+ treatment and show PTP-dependent mitochondrial Ca2+ release but not swelling. Cu2+ treatment causes formation of disulfide bridges between Cys23 of subunits a that stabilize dimers in absence of e and g subunits and favors the open state of wild-type F-ATP synthase channels. Absence of e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TM of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. CONCLUSION: F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel, thus is a prime candidate for PTP formation. Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthase.


Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Calcio/metabolismo , Microscopía por Crioelectrón , Dimerización , Potencial de la Membrana Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/genética , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
J Biol Chem ; 293(38): 14632-14645, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30093404

RESUMEN

Modification with arginine-specific glyoxals modulates the permeability transition (PT) of rat liver mitochondria, with inhibitory or inducing effects that depend on the net charge of the adduct(s). Here, we show that phenylglyoxal (PGO) affects the PT in a species-specific manner (inhibition in mouse and yeast, induction in human and Drosophila mitochondria). Following the hypotheses (i) that the effects are mediated by conserved arginine(s) and (ii) that the PT is mediated by the F-ATP synthase, we have narrowed the search to 60 arginines. Most of these residues are located in subunits α, ß, γ, ϵ, a, and c and were excluded because PGO modification did not significantly affect enzyme catalysis. On the other hand, yeast mitochondria lacking subunit g or bearing a subunit g R107A mutation were totally resistant to PT inhibition by PGO. Thus, the effect of PGO on the PT is specifically mediated by Arg-107, the only subunit g arginine that has been conserved across species. These findings are evidence that the PT is mediated by F-ATP synthase.


Asunto(s)
Arginina/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Fenilglioxal/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Calcio/metabolismo , Catálisis , Dimerización , Drosophila , Células HEK293 , Humanos , Ratones , Mitocondrias/enzimología , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , Especificidad de la Especie
15.
EMBO Rep ; 19(2): 257-268, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217657

RESUMEN

The permeability transition pore (PTP) is a Ca2+-dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)-ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP-dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch-clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F-ATP synthase.


Asunto(s)
Histidina/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Bovinos , Línea Celular , Permeabilidad de la Membrana Celular , Histidina/química , Humanos , Hidrólisis , Hipoxia/metabolismo , Ratones , Mitocondrias Hepáticas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Moleculares , Simulación de Dinámica Molecular , Consumo de Oxígeno , Conformación Proteica , Subunidades de Proteína
16.
Cell Calcium ; 60(2): 102-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26995056

RESUMEN

Mitochondria-dependent programmed cell death (PCD) in yeast shares many features with the intrinsic apoptotic pathway of mammals. With many stimuli, increased cytosolic [Ca(2+)] and ROS generation are the triggering signals that lead to mitochondrial permeabilization and release of proapoptotic factors, which initiates yeast PCD. While in mammals the permeability transition pore (PTP), a high-conductance inner membrane channel activated by increased matrix Ca(2+) and oxidative stress, is recognized as part of this signaling cascade, whether a similar process occurs in yeast is still debated. The potential role of the PTP in yeast PCD has generally been overlooked because yeast mitochondria lack the Ca(2+) uniporter, which in mammals allows rapid equilibration of cytosolic Ca(2+) with the matrix. In this short review we discuss the nature of the yeast permeability transition and reevaluate its potential role in the effector phase of yeast PCD triggered by Ca(2+) and oxidative stress.


Asunto(s)
Apoptosis , Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Modelos Biológicos
17.
J Biol Chem ; 289(23): 15980-5, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24790105

RESUMEN

Purified F-ATP synthase dimers of yeast mitochondria display Ca(2+)-dependent channel activity with properties resembling those of the permeability transition pore (PTP) of mammals. After treatment with the Ca(2+) ionophore ETH129, which allows electrophoretic Ca(2+) uptake, isolated yeast mitochondria undergo inner membrane permeabilization due to PTP opening. Yeast mutant strains ΔTIM11 and ΔATP20 (lacking the e and g F-ATP synthase subunits, respectively, which are necessary for dimer formation) display a striking resistance to PTP opening. These results show that the yeast PTP originates from F-ATP synthase and indicate that dimerization is required for pore formation in situ.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/fisiología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Saccharomyces cerevisiae/enzimología , Western Blotting , Dimerización , Electroforesis en Gel de Poliacrilamida , Proteínas de Transporte de Membrana Mitocondrial/química , Poro de Transición de la Permeabilidad Mitocondrial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...