Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-37156296

RESUMEN

Podocytes are specialized epithelial cells that maintain the glomerular filtration barrier. These cells are susceptible to lipotoxicity in the obese state and irreversibly lost during kidney disease leading to proteinuria and renal injury. PPARγ is a nuclear receptor whose activation can be renoprotective. This study examined the role of PPARγ in the lipotoxic podocyte using a PPARγ knockout (PPARγKO) cell line and since the activation of PPARγ by Thiazolidinediones (TZD) is limited by their side effects, it explored other alternative therapies to prevent podocyte lipotoxic damage. Wild-type and PPARγKO podocytes were exposed to the fatty acid palmitic acid (PA) and treated with the TZD (Pioglitazone) and/or the Retinoid X receptor (RXR) agonist Bexarotene (BX). It revealed that podocyte PPARγ is essential for podocyte function. PPARγ deletion reduced key podocyte proteins including podocin and nephrin while increasing basal levels of oxidative and ER stress causing apoptosis and cell death. A combination therapy of low-dose TZD and BX activated both the PPARγ and RXR receptors reducing PA-induced podocyte damage. This study confirms the crucial role of PPARγ in podocyte biology and that their activation in combination therapy of TZD and BX may be beneficial in the treatment of obesity-related kidney disease.


Asunto(s)
Enfermedades Renales , Podocitos , Tiazolidinedionas , Humanos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Bexaroteno/farmacología
3.
Liver Int ; 40(10): 2553-2567, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32432822

RESUMEN

BACKGROUND & AIMS: Molecular mechanisms by which hypoxia might contribute to hepatosteatosis, the earliest stage in non-alcoholic fatty liver disease (NAFLD) pathogenesis, remain still to be elucidated. We aimed to assess the impact of hypoxia-inducible factor 2α (HIF2α) on the fatty acid translocase CD36 expression and function in vivo and in vitro. METHODS: CD36 expression and intracellular lipid content were determined in hypoxic hepatocytes, and in hypoxic CD36- or HIF2α -silenced human liver cells. Histological analysis, and HIF2α and CD36 expression were evaluated in livers from animals in which von Hippel-Lindau (Vhl) gene is inactivated (Vhlf/f -deficient mice), or both Vhl and Hif2a are simultaneously inactivated (Vhlf/f Hif2α/f -deficient mice), and from 33 biopsy-proven NAFLD patients and 18 subjects with histologically normal liver. RESULTS: In hypoxic hepatocytes, CD36 expression and intracellular lipid content were augmented. Noteworthy, CD36 knockdown significantly reduced lipid accumulation, and HIF2A gene silencing markedly reverted both hypoxia-induced events in hypoxic liver cells. Moreover livers from Vhlf/f -deficient mice showed histologic characteristics of non-alcoholic steatohepatitis (NASH) and increased CD36 mRNA and protein amounts, whereas both significantly decreased and NASH features markedly ameliorated in Vhlf/f Hif2αf/f -deficient mice. In addition, both HIF2α and CD36 were significantly overexpressed within the liver of NAFLD patients and, interestingly, a significant positive correlation between hepatic transcript levels of CD36 and erythropoietin (EPO), a HIF2α -dependent gene target, was observed in NAFLD patients. CONCLUSIONS: This study provides evidence that HIF2α drives lipid accumulation in human hepatocytes by upregulating CD36 expression and function, and could contribute to hepatosteatosis setup.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Antígenos CD36/genética , Ácidos Grasos , Humanos , Hipoxia , Hígado , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA