Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 276: 116707, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39068863

RESUMEN

The 3CL protease (3CLpro, Mpro) plays a key role in the replication of the SARS-CoV-2 and was validated as therapeutic target by the development and approval of specific antiviral drugs (nirmatrelvir, ensitrelvir), inhibitors of this protease. Moreover, its high conservation within the coronavirus family renders it an attractive therapeutic target for the development of anti-coronavirus compounds with broad spectrum activity to control COVID-19 and future coronavirus diseases. Here we report on the design, synthesis and structure-activity relationships of a new series of small covalent reversible inhibitors of the SARS-CoV-2 3CLpro. As elucidated thanks to the X-Ray structure of some inhibitors with the 3CLpro, the mode of inhibition involves acylation of the thiol of the catalytic cysteine. The synthesis of 60 analogs led to the identification of compound 56 that inhibits the SARS-CoV-2 3CLpro with high potency (IC50 = 70 nM) and displays antiviral activity in cells (EC50 = 3.1 µM). Notably, compound 56 inhibits the 3CLpro of three other human coronaviruses and exhibit a good selectivity against two human cysteine proteases. These results demonstrate the potential of this electrophilic N-acylbenzimidazole series as a basis for further optimization.


Asunto(s)
Antivirales , Bencimidazoles , Proteasas 3C de Coronavirus , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Relación Estructura-Actividad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Humanos , Bencimidazoles/farmacología , Bencimidazoles/química , Bencimidazoles/síntesis química , Cisteína Endopeptidasas/metabolismo , Acilación , Cisteína/química , Cisteína/farmacología , Estructura Molecular , Relación Dosis-Respuesta a Droga , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Modelos Moleculares , Diseño de Fármacos , Cristalografía por Rayos X
2.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796300

RESUMEN

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Péptido Hidrolasas , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/química , Proteasas 3C de Coronavirus , Antivirales/química
3.
J Med Chem ; 65(24): 16651-16664, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36473699

RESUMEN

It is critical that novel classes of antituberculosis drugs are developed to combat the increasing burden of infections by multidrug-resistant strains. To identify such a novel class of antibiotics, a chemical library of unique 3-D bioinspired molecules was explored revealing a promising, mycobacterium specific Tricyclic SpiroLactam (TriSLa) hit. Chemical optimization of the TriSLa scaffold delivered potent analogues with nanomolar activity against replicating and nonreplicating Mycobacterium tuberculosis. Characterization of isolated TriSLa-resistant mutants, and biochemical studies, found TriSLas to act as allosteric inhibitors of type II NADH dehydrogenases (Ndh-2 of the electron transport chain), resulting in an increase in bacterial NADH/NAD+ ratios and decreased ATP levels. TriSLas are chemically distinct from other inhibitors of Ndh-2 but share a dependence for fatty acids for activity. Finally, in vivo proof-of-concept studies showed TriSLas to protect zebrafish larvae from Mycobacterium marinum infection, suggesting a vulnerability of Ndh-2 inhibition in mycobacterial infections.


Asunto(s)
Mycobacterium tuberculosis , NAD , Animales , Pez Cebra , Antituberculosos/farmacología , NADH NADPH Oxidorreductasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA