Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Waste Manag ; 181: 211-219, 2024 May 30.
Article En | MEDLINE | ID: mdl-38648723

Complex organic matter represents a suitable substrate to produce hydrogen through dark fermentation (DF) process. To increase H2 yields, pretreatment technology is often required. The main objective of the present work was to investigate thermo-acid pretreatment impact on sugar solubilization and biotic parameters of DF of sorghum or organic fraction of municipal solid waste (OFMSW). Biochemical hydrogen potential tests were carried out without inoculum using raw or thermo-acid pretreated substrates. Results showed an improvement in sugar solubilization after thermo-acid pretreatments. Pretreatments led to similar DF performances (H2 and total metabolite production) compared to raw biomasses. Nevertheless, they were responsible for bacterial shifts from Enterobacteriales towards Clostridiales and Bacillales as well as metabolic changes from acetate towards butyrate or ethanol. The metabolic changes were attributed to the biomass pretreatment impact on indigenous bacteria as no change in the metabolic profile was observed after performing thermo-acid pretreatments on irradiated OFMSW (inactivated indigenous bacteria and inoculum addition). Consequently, acid pretreatments were inefficient to improve DF performances but led to metabolic and bacterial community changes due to their impact on indigenous bacteria.


Biomass , Fermentation , Bacteria/metabolism , Solid Waste/analysis , Hydrogen/metabolism , Sorghum/metabolism , Refuse Disposal/methods
2.
Waste Manag ; 154: 136-145, 2022 Dec.
Article En | MEDLINE | ID: mdl-36242815

Cover crops harvested at a low maturity stage generally have a high moisture content, which may generate energy losses during silage storage via effluent production and undesirable fermentations. This paper investigates the use of different waste types as absorbent co-substrates to be added before ensiling. The relation between the absorbent water holding capacity and silage effluent volume was first studied to find an effective parameter to prevent effluent production. Effluent retention was found to be proportional to the absorbent loading and water holding capacity (r2 = 0.98) and up to 90 % of effluent production was avoided when compared to control (295 l.t-1). The impact of different co-substrates (including bio-waste and manures) on overall ensiling performances was then investigated at an optimized absorbent loading. All co-substrates allowed a total effluent retention while a 76 l.t-1 effluent volume was reported for the control. The silage fermentation was modified or mostly unchanged depending on the co-substrate chemical and microbial properties and different metabolic pathways were observed (e.g. homolactic or butyric fermentation). In most conditions, the methane potential of the crop was efficiently preserved over a storage of 60 days. Co-ensiling was shown to be a relevant silage preparation method for biogas production.

3.
Bioresour Technol ; 348: 126722, 2022 Mar.
Article En | MEDLINE | ID: mdl-35041924

An innovative process aiming to combine storage and alkali pretreatment of cover crops was investigated using lime as a low cost and environmental friendly reactant. Different lime loadings and Total Solid concentrations (TS) allowed to highlight the abiotic mechanisms of deacetylation during the early stages of the process. Long-term storage experiments of rye and sunflower cover crops at 100 g.kgTS-1 lime loading allowed to evaluate the fermentation kinetics and to compare performances in dry and wet conditions to classical silage storage. The dry condition allowed an efficient alkaline storage and up to a 15.7% Biochemical Methane Potential (BMP) increase, while the wet condition underwent a succession of fermentations with a high butyric acid accumulation and H2 production, leading to a 13% BMP loss. Silage experiments allowed an efficient preservation of the BMP, with no significant variation over the 6-month storage duration.


Biofuels , Methane , Anaerobiosis , Crops, Agricultural , Fermentation , Silage/analysis
4.
Bioresour Technol ; 330: 124986, 2021 Jun.
Article En | MEDLINE | ID: mdl-33744738

The aim of this work was to study an innovative alkaline process on two cover crops. CaO load of 60 g.kgTS-1 was implemented to combine the functions of storage and pretreatment. Lab-scale reactors were monitored for 180 days to assess the effect of this process on the physico-chemical properties of the biomass. From the first days, pH was not maintained in an alkaline zone and microbial fermentation activity was observed with the degradation of available carbohydrates and production of metabolites, CO2 and H2. High butyric acid accumulation was observed and mass losses of 18.1% and 9.0% of initial VS occurred for oat and rye, respectively. However, no methane potential loss was recorded in the short and long term and the crops were efficiently preserved. The pretreatment had no major impact on fiber solubilization, and no increase in BMP was obtained, which was attributed to the short duration of the alkaline conditions.


Crops, Agricultural , Methane , Anaerobiosis , Biofuels , Biomass , Fermentation
5.
Bioresour Technol ; 319: 124234, 2021 Jan.
Article En | MEDLINE | ID: mdl-33254457

Complex organic substrates represent an important and relevant feedstock for producing hydrogen by Dark Fermentation (DF). Usually, an external microbial inoculum originated from various natural environments is added to seed the DF reactors. However, H2 yields are significantly impacted by the inoculum origin and the storage conditions as microbial community composition can fluctuate. This study aims to determine how the type and time of inoculum storage can impact the DF performances. Biochemical Hydrogen Potential tests were carried out using three substrates (glucose, the organic fraction of municipal solid waste, and food waste), inocula of three different origins, different storage conditions (freezing or freeze-drying) and duration. As a result, H2 production from glucose with the differently stored inocula was significantly impacted (positively or negatively) and was inoculum-origin-dependent. For complex substrates, hydrogen yields with the stored inocula were not statistically different from the fresh inocula, offering the possibility to store an inoculum.


Food , Refuse Disposal , Bioreactors , Fermentation , Glucose , Hydrogen
6.
Bioresour Technol ; 313: 123665, 2020 Oct.
Article En | MEDLINE | ID: mdl-32574750

Hydrogen production by dark fermentation of complex organic substrates, such as biowaste, can naturally take place with indigenous bacteria or by adding an external microbial inoculum issued from various natural environments. This study aims to determine whether indigenous bacteria associated with thermal pretreatment could impact dark fermentation performances. Biochemical hydrogen potential tests were carried out on seven organic substrates. Results showed a strong influence of the indigenous bacteria which are as effective as thermally pretreated exogenous bacteria to produce H2 and metabolites. High abundance in Clostridiales and/or Enterobacteriales was associated with high H2 yield. This study shows that no inoculum nor pretreatment are required to achieve satisfactory dark fermentation performances from organic waste.


Bacteria , Hydrogen , Bioreactors , Fermentation
7.
Biotechnol Adv ; 32(5): 934-51, 2014.
Article En | MEDLINE | ID: mdl-24780154

Nowadays there is a growing interest on the use of both lignocellulosic and algae biomass to produce biofuels (i.e. biohydrogen, ethanol and methane), as future alternatives to fossil fuels. In this purpose, thermal and thermo-chemical pretreatments have been widely investigated to overcome the natural physico-chemical barriers of such biomass and to enhance biofuel production from lignocellulosic residues and, more recently, marine biomass (i.e. macro and microalgae). However, the pretreatment technologies lead not only to the conversion of carbohydrate polymers (ie cellulose, hemicelluloses, starch, agar) to soluble monomeric sugar (ie glucose, xylose, arabinose, galactose), but also the generation of various by-products (i.e. furfural and 5-HMF). In the case of lignocellulosic residues, part of the lignin can also be degraded in lignin derived by-products, mainly composed of phenolic compounds. Although the negative impact of such by-products on ethanol production has been widely described in literature, studies on their impact on biohydrogen and methane production operated with mixed cultures are still very limited. This review aims to summarise and discuss literature data on the impact of pre-treatment by-products on H2-producing dark fermentation and anaerobic digestion processes when using mixed cultures as inoculum. As a summary, furanic (5-HMF, furfural) and phenolic compounds were found to be stronger inhibitors of the microbial dark fermentation than the full anaerobic digestion process. Such observations can be explained by differences in process parameters: anaerobic digestion is performed with more complex mixed cultures, lower substrate/inoculum and by-products/inoculum ratios and longer batch incubation times than dark fermentation. Finally, it has been reported that, during dark fermentation process, the presence of by-products could lead to a metabolic shift from H2-producing pathways (i.e. acetate and butyrate) to non-H2-producing pathways (i.e. lactate, ethanol and propionate) and whatever the metabolic route, metabolites can be all further converted into methane, but at different rates.


Biomass , Eukaryotic Cells/metabolism , Furans/pharmacology , Lignin/pharmacology , Phenols/pharmacology , Anaerobiosis/drug effects , Eukaryotic Cells/drug effects , Hydrolysis/drug effects
8.
Bioresour Technol ; 144: 149-55, 2013 Sep.
Article En | MEDLINE | ID: mdl-23867533

The assessment of the pretreatment effect on the anaerobic digestion process is generally based on the results of batch tests, which may fail in truly predicting full-scale anaerobic reactors performance. Therefore, in this study, the effect of alkaline pretreatment on the anaerobic digestion of ensiled sorghum forage was evaluated by comparing the results of two semi-continuous CSTR (Continuously Stirred Tank Reactor) anaerobic reactors. Results showed that an alkaline pretreatment step, prior to the anaerobic digestion of ensiled sorghum forage, can have a beneficial effect both in enhancing methane production (an increase of 25% on methane production was observed, if compared to that of untreated sorghum) and in giving more stability to the anaerobic digestion process.


Animal Feed/analysis , Bioreactors/microbiology , Methane/biosynthesis , Silage/analysis , Sodium Hydroxide/pharmacology , Sorghum/chemistry , Alkalies/chemistry , Anaerobiosis/drug effects , Fatty Acids, Volatile/analysis , Hydrogen-Ion Concentration/drug effects , Time Factors
9.
Bioresour Technol ; 144: 492-8, 2013 Sep.
Article En | MEDLINE | ID: mdl-23896436

Macroalgae are biomass resources that represent a valuable feedstock to be used entirely for human consumption or for food additives after some extractions (mainly colloids) and/or for energy production. In order to better develop the algal sector, it is important to determine the capacity of macroalgae to produce these added-values molecules for food and/or for energy industries on the basis of their biochemical characteristics. In this study, ten macroalgae obtained from French Brittany coasts (France) were selected. The global biochemical composition (proteins, lipids, carbohydrates, fibers), the presence and characteristics of added-values molecules (alginates, polyphenols) and the biochemical methane potential of these algae were determined. Regarding its biochemical composition, Palmaria palmata is interesting for food (rich in nutrients) and for anaerobic digestion (0.279 LCH4/gVS). Saccharina latissima could be used for alginate extraction (242 g/kgTS, ratio between mannuronic and guluronic acid M/G=1.4) and Sargassum muticum for polyphenol extraction (19.8 g/kgTS).


Energy-Generating Resources , Methane/biosynthesis , Seaweed/metabolism , Biofuels/analysis , Carbohydrates/analysis , Carbon/analysis , France , Humans , Nitrogen/analysis , Polyphenols/analysis , Seasons , Seaweed/growth & development , Volatilization
10.
Bioresour Technol ; 131: 460-7, 2013 Mar.
Article En | MEDLINE | ID: mdl-23384779

Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates.


Abattoirs/instrumentation , Alkalies/chemistry , Bacteria, Anaerobic/metabolism , Fats/chemistry , Fats/metabolism , Industrial Waste/prevention & control , Sewage/microbiology , Esterification , Hot Temperature , Refuse Disposal/methods
11.
Bioresour Technol ; 120: 241-7, 2012 Sep.
Article En | MEDLINE | ID: mdl-22820113

Sunflower stalks can be used for the production of methane, but their recalcitrant structure requires the use of thermo-chemical pretreatments. Two thermal (55 and 170°C) and five thermo-chemical pretreatments (NaOH, H(2)O(2), Ca(OH)(2), HCl and FeCl(3)) were carried out, followed by anaerobic digestion. The highest methane production (259 ± 6 mL CH(4)g(-1) VS) was achieved after pretreatment at 55°C with 4% NaOH for 24h. Acidic pretreatments at 170°C removed more than 90% of hemicelluloses and uronic acids whereas alkaline and oxidative pretreatments were more effective in dissolving lignin. However, no pretreatment was effective in reducing the crystallinity of cellulose. Methane production rate was positively correlated with the amount of solubilized matter whereas methane potential was negatively correlated with the amount of lignin. Considering that the major challenge is obtaining increased methane potential, alkaline pretreatments can be recommended in order to optimize the anaerobic digestion of lignocellulosic substrates.


Biotechnology/methods , Helianthus/chemistry , Plant Stems/chemistry , Temperature , Anaerobiosis , Cellulose/metabolism , Furaldehyde/analogs & derivatives , Furaldehyde/metabolism , Hydrolysis , Kinetics , Lignin/metabolism , Methane/metabolism , Spectroscopy, Fourier Transform Infrared
12.
Water Res ; 45(18): 6011-20, 2011 Nov 15.
Article En | MEDLINE | ID: mdl-21924756

The aerobic granular systems are a good alternative to the conventional activated sludge (AS) ones to reduce the production of sludge generated in wastewater treatment plants (WWTP). Although the quantity of produced sludge is low its post-treatment is still necessary. In the present work the application of the anaerobic digestion combined with a thermal pre-treatment was studied to treat two different aerobic granular biomasses: one from a reactor fed with pig manure (G1) and another from a reactor fed with a synthetic medium to simulate an urban wastewater (G2). The results obtained with the untreated aerobic granular biomasses showed that their anaerobic biodegradability (BD) (33% for G1 and 49% for G2) was similar to that obtained for an activated sludge (30-50%) and demonstrate the feasibility of their anaerobic digestion. The thermal pre-treatment before the anaerobic digestion was proposed as a good option to enhance the BD when this was initially low (33% G1) with an enhancement between 20% at 60 °C and 88% at 170 °C with respect to the untreated sludge. However when the initial BD was higher (49% G2) the thermal pre-treatment produced a slight improvement in the methane production (14% and 18%) and at high temperatures (190 and 210 °C) which did not justify the application of such a treatment.


Sewage/chemistry , Sewage/microbiology , Temperature , Aerobiosis , Anaerobiosis , Batch Cell Culture Techniques , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Hydrogen-Ion Concentration , Lipids/analysis , Methane/analysis , Proteins/analysis , Solubility , Volatilization
13.
Bioresour Technol ; 102(17): 7887-95, 2011 Sep.
Article En | MEDLINE | ID: mdl-21689929

The potential of biogas production from the residues of second generation bioethanol production was investigated taking into consideration two types of pretreatment: lime or alkaline hydrogen peroxide. Bagasse was pretreated, enzymatically hydrolyzed and the wastes from pretreatment and hydrolysis were used to produce biogas. Results have shown that if pretreatment is carried out at a bagasse concentration of 4% DM, the highest global methane production is obtained with the peroxide pretreatment: 72.1 Lmethane/kgbagasse. The recovery of lignin from the peroxide pretreatment liquor was also the highest, 112.7 ± 0.01 g/kg of bagasse. Evaluation of four different biofuel production scenarios has shown that 63-65% of the energy that would be produced by bagasse incineration can be recovered by combining ethanol production with the combustion of lignin and hydrolysis residues, along with the anaerobic digestion of pretreatment liquors, while only 32-33% of the energy is recovered by bioethanol production alone.


Ethanol/metabolism , Hot Temperature , Methane/biosynthesis , Saccharum , Calcium Hydroxide/chemistry , Chromatography, High Pressure Liquid , Hydrogen Peroxide/chemistry , Lignin/chemistry
14.
J Hazard Mater ; 183(1-3): 1-15, 2010 Nov 15.
Article En | MEDLINE | ID: mdl-20708333

This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.


Biodegradation, Environmental , Sewage/microbiology , Anaerobiosis , Hot Temperature , Hydrolysis , Methods
15.
J Hazard Mater ; 181(1-3): 241-7, 2010 Sep 15.
Article En | MEDLINE | ID: mdl-20605678

The removal of 13 polycyclic aromatic hydrocarbons, 7 polychlorobiphenyls and nonylphenol was measured during the continuous anaerobic digestion of five different sludge samples. The reactors were fed with one of the following: primary/secondary sludge (PS/SS), thermally treated PS, cellulose-added SS, or SS augmented with dissolved and colloidal matter (DCM). These various feeding conditions induced variable levels of micropollutant bioavailability (assumed to limit their biodegradation) and overall metabolism (supposed to be linked to micropollutant metabolism throughout co-metabolism). On the one hand, overall metabolism was higher with secondary sludge than with primary and the same was observed for micropollutant removal. However, when overall metabolism was enhanced thanks to cellulose addition, a negative influence on micropollutant removal was observed. This suggests that either the co-metabolic synergy would be linked to a specific metabolism or co-metabolism was not the limiting factor in this case. On the other hand, micropollutant bioavailability was presumably diminished by thermal treatment and increased by DCM addition. In both cases, micropollutant removal was reduced. These results suggest that neither overall metabolism nor bioavailability would absolutely limit micropollutant removal. Each phenomenon might alternatively predominate depending on the feed characteristics.


Polycyclic Aromatic Hydrocarbons/metabolism , Sewage/microbiology , Anaerobiosis , Biodegradation, Environmental , Biological Availability , Bioreactors , Cellulose , Phenols/metabolism , Polychlorinated Biphenyls/metabolism
16.
Water Res ; 44(13): 3797-806, 2010 Jul.
Article En | MEDLINE | ID: mdl-20569963

The anaerobic removal of 13 Polycyclic Aromatic Hydrocarbons (PAHs) was measured in five continuous anaerobic digestors with different feed sludge, in which abiotic losses were neglected. These feeds were chosen to generate different levels of PAH bioavailability and cometabolism within the reactors. Based on the accurate modelling of PAH sorption in sludge, the aqueous fraction (including free and sorbed-to-dissolved-and-colloidal-matter PAHs) was demonstrated to be bioavailable, which validated a widespread assumption about micropollutants bioavailability in sludge. It was also demonstrated that bioavailability is not the only influencing factor. Indeed, PAHs biodegradation resulted from a combination of bioavailability and cometabolism. An equation adapted from Criddle (1993, The Kinetics of Cometabolism. Biotechnology and Bioengineering 41, 1048-1056) that takes into account both mechanisms was shown to fit the experimental data, with dry matter removal rate identified as the criteria for cometabolism. The existence of a threshold of dry matter cometabolism was suggested, below which PAHs removal would not be possible. The parameters of the Criddle equation were demonstrated to depend on PAH molecular structure, and the results suggest that they would also be influenced by substrate composition and microbial population. This research provided original outcomes for the assessment of micropollutants fate. Indeed, the understanding of the driving mechanisms was improved, which has implications for the optimization of micropollutants removal.


Bacteria/metabolism , Polycyclic Aromatic Hydrocarbons/isolation & purification , Sewage/microbiology , Water Pollutants, Chemical/isolation & purification , Anaerobiosis , Biodegradation, Environmental , Biological Availability , Fluorenes/isolation & purification , Kinetics , Models, Biological , Regression Analysis , Waste Disposal, Fluid
17.
J Phys Condens Matter ; 21(17): 174210, 2009 Apr 29.
Article En | MEDLINE | ID: mdl-21825414

We present a comprehensive study of longitudinal transport of two-dimensional (2D) carriers in n- and p-type modulation doped Ga(x)In(1-x)N(y)As(1-y) /GaAs quantum well structures. The Hall mobility and carrier density of electrons in the n-modulation doped quantum wells (QWs) decreases with increasing nitrogen composition. However, the mobility of the 2D holes in p-modulation doped wells is not influenced by nitrogen and it is significantly higher than that of 2D electrons in n-modulation doped material. The observed behaviour is explained in terms of increasing electron effective mass as well as enhanced N-related alloying scattering with increasing nitrogen content. In order to determine the conduction band (CB) and valence band (VB) structures as well as electron and hole effective masses, the band anticrossing model with an eight-band [Formula: see text] approximation in the Lüttinger-Kohn approach is used. The effects of strain, quantum confinement and the strong coupling between the localized nitrogen states and the CB extended states of GaInAs are considered in the calculations. The results indicate that the nitrogen induces a strong perturbation to the CB of the matrix semiconductor whilst the VB remains unaffected. The temperature dependent mobility of 2D electron gas is discussed using an analytical model that accounts for the most important scattering mechanisms. The results indicate that the interface roughness and N-related alloy scattering are the dominant mechanisms at low temperatures, while polar optical phonon and N-related alloy scattering limit mobility at high temperatures.

18.
Environ Technol ; 25(4): 459-69, 2004 Apr.
Article En | MEDLINE | ID: mdl-15214451

The biological degradation of solid fatty residues is limited by their low bioavailability. In this work, the effect of the day mineral bentonite on the degradation of hexane extractable matter and its conversion to volatile fatty acids was investigated. Our results showed that the best performance in the elimination of hexane extractable matter (73% +/- 2.5) and the production of volatile fatty acids (39% +/- 1.5) were observed in continuous experimental assays with a bentonite/greases ratio of 0.9. Isotherm studies showed that the sorption equilibria of oleate on bentonite and sludge could be described by the LANGMUIR model.


Bentonite/chemistry , Bioreactors , Fatty Acids/chemistry , Sewage/chemistry , Bacteria, Anaerobic/metabolism , Biodegradation, Environmental , Fatty Acids/metabolism , Humans , Volatilization
19.
Bioresour Technol ; 90(1): 89-94, 2003 Oct.
Article En | MEDLINE | ID: mdl-12835063

In France, fatty residues considered as "non-ultimate" waste will not be accepted in landfill from 2002, in accordance with French legislation. Anaerobic digestion appears as an alternative process to mobilize and profitably use such fermentable waste. In this work, the effect of an alkaline pretreatment on the degradation of hexane extractible matter (HEM) and the production of volatile fatty acids (VFAs) was compared in reactors working at pH 6.5 and 8.5. The results obtained showed that 40% (+/- 0.1) of HEM were degraded at pH 8.5 versus 10% (+/- 0.3) at pH 6.5, regardless of the alkali agent used to saponify the greasy wastes. The highest performances of VFA production (8.45% +/- 0.3) were obtained at pH 8.5 with greases saponified by potassium hydroxide, compared to results (4.25% +/- 0.1) with greasy waste saponified by sodium hydroxide. This difference in VFA production might be attributable to biotoxic molecules generated during the saponification of greases by soda, limiting consequently the VFA production process.


Bacteria, Anaerobic/chemistry , Bacteria, Anaerobic/metabolism , Bioreactors/microbiology , Fats/metabolism , Industrial Waste/prevention & control , Water Purification/methods , Bacteria, Anaerobic/drug effects , Biodegradation, Environmental , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Hydrolysis , Hydroxides/chemistry , Hydroxides/pharmacology , Potassium Compounds/chemistry , Potassium Compounds/pharmacology , Soaps/chemistry , Soaps/metabolism , Sodium Hydroxide/chemistry , Sodium Hydroxide/pharmacology , Water Pollutants, Chemical/metabolism
...