Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Microbiol ; 11: 1994, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983018

RESUMEN

The human pathogenic yeast Candida parapsilosis has gained significant importance over the past decades as one of the principal causes of fungal bloodstream infections. Isolates of C. parapsilosis are known to be able to switch between several different colony morphologies in vitro, which are correlated with different cell shapes, altered cell surface properties, and thus different capacities to form biofilms on indwelling medical devices. In a set of six clinical specimens from a single surgery patient yielding stable smooth- as well as crepe-morphology isolates, we investigated the differences between five of them on a phenotypic and genomic level. In contrast to the initial assumption that they were switched forms of a clonal strain, karyotyping and genome sequencing showed that the patient was colonized by at least three distinct linages. Statistical analysis placed these groups distantly across the population of C. parapsilosis. Interestingly the single blood culture isolate was of smooth morphology and matched with an isolate from the patient's nose of similar morphology. Strong variation between the isolates was seen in adhesin-encoding genes, where repeat regions showed significant variation in length and repeat-numbers, most strikingly in HWP1 of the smooth isolates. Although no differences in drug susceptibility were evident, the high phylogenetic distance separating the individual strains highlights the need for testing of multiple colonies in routine practice. The absence of biofilm formation in the blood stream isolate indicates a lack of respective adhesins in the cell wall, in turn pointing toward lack of adhesion as a positively contributing factor for dissemination.

3.
Bioinformatics ; 36(8): 2569-2571, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31834373

RESUMEN

SUMMARY: An increasing number of phased (i.e. with resolved haplotypes) reference genomes are available. However, the most genetic variant calling tools do not explicitly account for haplotype structure. Here, we present HaploTypo, a pipeline tailored to resolve haplotypes in genetic variation analyses. HaploTypo infers the haplotype correspondence for each heterozygous variant called on a phased reference genome. AVAILABILITY AND IMPLEMENTATION: HaploTypo is implemented in Python 2.7 and Python 3.5, and is freely available at https://github.com/gabaldonlab/haplotypo, and as a Docker image. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Haplotipos/genética , Heterocigoto
4.
Genetics ; 213(4): 1545-1563, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31604798

RESUMEN

Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.


Asunto(s)
Ascomicetos/genética , Cuerpos Fructíferos de los Hongos/genética , Genómica , Transcriptoma/genética , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Sitios Genéticos , Genoma Fúngico , Fenotipo , Filogenia , Metabolismo Secundario/genética
5.
Front Microbiol ; 10: 112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809200

RESUMEN

Candida glabrata is an opportunistic fungal pathogen that currently ranks as the second most common cause of candidiasis. Although the mechanisms underlying virulence and drug resistance in C. glabrata are now starting to be elucidated, we still lack a good understanding of how this yeast adapts during the course of an infection. Outstanding questions are whether the observed genomic plasticity of C. glabrata plays a role during infection, or what levels of genetic variation exist within an infecting clonal population. To shed light onto the genomic variation within infecting C. glabrata populations, we compared the genomes of 11 pairs and one trio of serial clinical isolates, each obtained from a single patient. Our results provide a catalog of genetic variations existing within clonal infecting isolates, and reveal an enrichment of non-synonymous changes in genes encoding cell-wall proteins. Genetic variation and the presence of non-synonymous mutations and copy number variations accumulated within the host, suggest that clonal populations entail a non-negligible level of genetic variation that may reflect selection processes that occur within the human body. As we show here, these genomic changes can underlie phenotypic differences in traits that are relevant for infection.

6.
Curr Biol ; 28(1): 15-27.e7, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29249661

RESUMEN

Candida glabrata is an opportunistic fungal pathogen that ranks as the second most common cause of systemic candidiasis. Despite its genus name, this yeast is more closely related to the model yeast Saccharomyces cerevisiae than to other Candida pathogens, and hence its ability to infect humans is thought to have emerged independently. Moreover, C. glabrata has all the necessary genes to undergo a sexual cycle but is considered an asexual organism due to the lack of direct evidence of sexual reproduction. To reconstruct the recent evolution of this pathogen and find footprints of sexual reproduction, we assessed genomic and phenotypic variation across 33 globally distributed C. glabrata isolates. We cataloged extensive copy-number variation, which particularly affects genes encoding cell-wall-associated proteins, including adhesins. The observed level of genetic variation in C. glabrata is significantly higher than that found in Candida albicans. This variation is structured into seven deeply divergent clades, which show recent geographical dispersion and large within-clade genomic and phenotypic differences. We show compelling evidence of recent admixture between differentiated lineages and of purifying selection on mating genes, which provides the first evidence for the existence of an active sexual cycle in this yeast. Altogether, our data point to a recent global spread of previously genetically isolated populations and suggest that humans are only a secondary niche for this yeast.


Asunto(s)
Candida glabrata/fisiología , Candidiasis/microbiología , Evolución Molecular , Variación Genética , Genoma Fúngico , Candida glabrata/genética , Humanos , Fenotipo , Reproducción
7.
DNA Res ; 23(3): 181-92, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26951068

RESUMEN

The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot.


Asunto(s)
Adaptación Fisiológica , Peces Planos/genética , Genoma , Animales , Evolución Molecular , Proteínas de Peces/genética , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Secuencias Repetitivas de Ácidos Nucleicos
8.
FEMS Yeast Res ; 16(2): fov110, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26684722

RESUMEN

The yeast Candida glabrata is an opportunistic human fungal pathogen whose incidence has increased in the last two decades. Despite its name, this yeast is only distantly related to the model fungal pathogen C. albicans, and more closely related to Saccharomyces cerevisiae and other yeasts that underwent an ancient whole-genome duplication. Understanding what specific traits make C. glabrata a successful opportunistic pathogen within a clade of mostly innocuous yeasts, and how these compare to virulence traits in distant pathogens such as C. albicans is a focus of intense research. From an evolutionary perspective, uncovering how the ability to infect humans has emerged multiple, independent times in different lineages may reveal new disease mechanisms and provide us with the capacity to predict which genomic features in a clade may confer a higher potential to develop virulence against humans.


Asunto(s)
Candida glabrata/genética , Evolución Molecular , Factores de Virulencia/genética , Candida glabrata/patogenicidad , Candidiasis/microbiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...