Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(24): 9054-9086, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903216

RESUMEN

At the energy-chemistry nexus, key molecules include carbon dioxide (CO2), hydrogen (H2), methane (CH4), and ammonia (NH3). The position of these four molecules and that of the more general family of synthetic macromolecular polymer blends (found in plastics) were cross-analyzed with the planetary boundary framework, and as part of five scientific policy roadmaps for the energy transition. According to the scenarios considered, the use of some of these molecular substances will be drastically modified in the coming years. Ammonia, which is currently almost exclusively synthesized as feedstock for the fertilizer industry, is envisioned as a future carbon-free energy vector. "Green hydrogen" is central to many projected decarbonized chemical processes. Carbon dioxide is forecast to shift from an unavoidable byproduct to a valuable feedstock for the production of carbon-based compounds. In this context, we believe that interdisciplinary elements from history, economics and anthropology are relevant to any attempted cross-analysis. Distinctive and crucial insights drawn from elements of humanities and social sciences have led us to formulate or re-raise open questions and possible blind-spots in main roadmaps, which were developed to guide, inter alia, chemical research toward the energy transition. We consider that these open questions are not sufficiently addressed in the academic arena around chemical research. Nevertheless, they are relevant to our understanding of the current planetary crisis, and to our capacity to properly assess the potential and limitations of chemical research addressing it. This academic perspective was written to share this understanding with the broader academic community. This work is intended not only as a call for a larger interdisciplinary method, to develop a sounder scientific approach to broader scenarios, but also - and perhaps mostly - as a call for the development of radically transdisciplinary routes of research. As scientists with different backgrounds, specialized in different disciplines and actively involved in contributing to shape solutions by means of our research, we bear ethical responsibility for the consequences of our acts, which often lead to consequences well beyond our discipline. Do our research and the knowledge it produces respond, perpetuate or even aggravate the problems encountered by society?

2.
ACS Catal ; 12(11): 6628-6639, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35692251

RESUMEN

Despite the great commercial relevance of zinc-promoted copper catalysts for methanol synthesis, the nature of the Cu-ZnO x synergy and the nature of the active Zn-based promoter species under industrially relevant conditions are still a topic of vivid debate. Detailed characterization of the chemical speciation of any promoter under high-pressure working conditions is challenging but specifically hampered by the large fraction of Zn spectator species bound to the oxidic catalyst support. We present the use of weakly interacting graphitic carbon supports as a tool to study the active speciation of the Zn promoter phase that is in close contact with the Cu nanoparticles using time-resolved X-ray absorption spectroscopy under working conditions. Without an oxidic support, much fewer Zn species need to be added for maximum catalyst activity. A 5-15 min exposure to 1 bar H2 at 543 K only slightly reduces the Zn(II), but exposure for several hours to 20 bar H2/CO and/or H2/CO/CO2 leads to an average Zn oxidation number of +(0.5-0.6), only slightly increasing to +0.8 in a 20 bar H2/CO2 feed. This means that most of the added Zn is in a zerovalent oxidation state during methanol synthesis conditions. The Zn average coordination number is 8, showing that this phase is not at the surface but surrounded by other metal atoms (whether Zn or Cu), and indicating that the Zn diffuses into the Cu nanoparticles under reaction conditions. The time scale of this process corresponds to that of the generally observed activation period for these catalysts. These results reveal the speciation of the relevant Zn promoter species under methanol synthesis conditions and, more generally, present the use of weakly interacting graphitic supports as an important strategy to avoid excessive spectator species, thereby allowing us to study the nature of relevant promoter species.

3.
Am J Case Rep ; 21: e925248, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32934194

RESUMEN

BACKGROUND Tumor lysis syndrome (TLS) represents a severe and dangerous side effect of chemotherapy. The frequency of TLS is not well known in patients with breast cancer, and there are no reports of TLS after the second or third lines of chemotherapy or immunotherapy combined with chemotherapy in these patients. CASE REPORT We present the case of a 55-year-old postmenopausal woman with metastatic triple-negative breast cancer who received multiple lines of chemotherapy and developed TLS after receiving combined chemoimmunotherapy. She presented to our medical center with generalized body weakness, sleepiness, anorexia, and oliguria 6 days after her first dose of combined chemoimmunotherapy with nanoparticle albumin-bound (nab)-paclitaxel (100 mg/m²) and atezolizumab (840 mg). A complete blood count on admission showed pancytopenia, with serum levels of uric acid at 17.8 mg/dL, creatinine at 3.4 mg/dL, potassium at 5.5 mEq/L, phosphorus at 5.0 mg/dL, and calcium at 9.3 mg/dL. TLS (grade 2) was diagnosed based on reported Cario-Bishop criteria, and the patient was promptly treated with intravenous hydration and a single dose of rasburicase (0.15 mg/kg). Symptoms completely resolved within 4 days, and the patient was discharged home. CONCLUSIONS We present a case of TLS after combined therapy with atezolizumab and nab-paclitaxel in a heavily pretreated patient with metastatic triple-negative breast cancer. Medical oncologists and general practice clinicians need to be aware of the possibility of TLS, even in unlikely cases, and to recognize the clinical signs of TLS to enable prompt and appropriate management.


Asunto(s)
Síndrome de Lisis Tumoral , Albúminas , Anticuerpos Monoclonales Humanizados , Femenino , Humanos , Persona de Mediana Edad , Paclitaxel/efectos adversos , Síndrome de Lisis Tumoral/etiología
4.
Chemistry ; 26(64): 14623-14638, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-32579726

RESUMEN

Requirements for improved catalytic formulations is continuously driving research in hydrotreating (HDT) catalysis for biomass upgrading and heteroatom removal for cleaner fuels. The present work proposes a surface-science approach for the understanding of the genesis of the active (sulfide) phase in model P-doped MoS2 hydrotreating catalysts supported on α-Al2 O3 single crystals. This approach allows one to obtain a surface-dependent insight by varying the crystal orientations of the support. Model phosphorus-doped catalysts are prepared via spin-coating of Mo-P precursor solutions onto four α-Al2 O3 crystal orientations, C(0001), A(11 2 ‾ 0), M(10 1 ‾ 0) and R(1 1 ‾ 02) that exhibit different speciations of surface -OH. 31 P and 95 Mo liquid-state NMR are used to give a comprehensive description of the Mo and P speciation of the phospho-molybdic precursor solution. The speciation of the deposition solution is then correlated with the genesis of the active MoS2 phase. XPS quantification of the surface P/Mo ratio reveal a surface-dependent phosphate aggregation driven by the amount of free phosphates in solution. Phosphates aggregation decreases in the following order C(0001)≫M(10 1 ‾ 0)>A(11 2 ‾ 0), R(1 1 ‾ 02). This evolution can be rationalized by an increasing strength of phosphate/surface interactions on the different α-Al2 O3 surface orientations from the C(0001) to the R(1 1 ‾ 02) plane. Retardation of the sulfidation with temperature is observed for model catalysts with the highest phosphate dispersion on the surface (A(11 2 ‾ 0), R(1 1 ‾ 02)), suggesting that phosphorus strongly intervene in the genesis of the active phase through a close intimacy between phosphates and molybdates. The surface P/Mo ratio appears as a key descriptor to quantify this retarding effect. It is proposed that retardation of sulfidation is driven by two effects: i) a chemical inhibition through formation of hardly reducible mixed molybdo-phosphate structures and ii) a physical inhibition with phosphate clusters inhibiting the growth of MoS2 . The surface-dependent phosphorus doping on model α-Al2 O3 supports can be used as a guide for the rational design of more efficient HDT catalysts on industrial γ-Al2 O3 carrier.

5.
Microsc Microanal ; 26(3): 397-402, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32241326

RESUMEN

High-temperature scanning electron microscopy allows the direct study of the temperature behavior of materials. Using a newly developed heating stage, tilted images series were recorded at high temperature and 3D images of the sample surface were reconstructed. By combining 3D images recorded at different temperatures, the variations of material roughness can be accurately described and associated with local changes in the topography of the sample surface.

7.
ACS Nano ; 12(8): 8467-8476, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30011370

RESUMEN

The catalytic performance and optical properties of bimetallic nanoparticles critically depend on the atomic distribution of the two metals in the nanoparticles. However, at elevated temperatures, during light-induced heating, or during catalysis, atomic redistribution can occur. Measuring such metal redistribution in situ is challenging, and a single experimental technique does not suffice. Furthermore, the availability of a well-defined nanoparticle system has been an obstacle for a systematic investigation of the key factors governing the atomic redistribution. In this study, we follow metal redistribution in precisely tunable, single-crystalline Au-core, Ag-shell nanorods in situ, both at a single particle and an ensemble-averaged level, by combining in situ transmission electron spectroscopy with in situ extended X-ray absorption fine structure validated by ex situ measurements. We show that the kinetics of atomic redistribution in Au-Ag nanoparticles depend on the metal composition and particle volume, such that a higher Ag content or a larger particle size led to significantly slower metal redistribution. We developed a simple theoretical model based on Fick's first law that can correctly predict the composition- and size-dependent alloying behavior in Au-Ag nanoparticles, as observed experimentally.

8.
J Am Chem Soc ; 137(50): 15915-28, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26588441

RESUMEN

The role of the oxide support on the structure of the MoS2 active phase (size, morphology, orientation, sulfidation ratio, etc.) remains an open question in hydrotreating catalysis and biomass processing with important industrial implications for the design of improved catalytic formulations. The present work builds on an aqueous-phase surface-science approach using four well-defined α-alumina single crystal surfaces (C (0001), A (112̅0), M (101̅0), and R (11̅02) planes) as surrogates for γ-alumina (the industrial support) in order to discriminate the specific role of individual support facets. The reactivity of the various surface orientations toward molybdenum adsorption is controlled by the speciation of surface hydroxyls that determines the surface charge at the oxide/water interface. The C (0001) plane is inert, and the R (11̅02) plane has a limited Mo adsorption capacity while the A (112̅0) and M (101̅0) surfaces are highly reactive. Sulfidation of model catalysts reveals the highest sulfidation degree for the A (112̅0) and M (101̅0) planes suggesting weak metal/support interactions. Conversely, a low sulfidation rate and shorter MoS2 slabs are found for the R (11̅02) plane implying stronger Mo-O-Al bonds. These limiting cases are reminiscent of type I/type II MoS2 nanostructures. Structural analogies between α- and γ- alumina surfaces allow us to bridge the material gap with real Al2O3-supported catalysts. Hence, it can be proposed that Mo distribution and sulfidation rate are heterogeneous and surface-dependent on industrial γ-Al2O3-supported high-surface-area catalysts. These results demonstrate that a proper control of the γ-alumina morphology is a strategic lever for a molecular-scale design of hydrotreating catalysts.

9.
Angew Chem Int Ed Engl ; 51(31): 7697-701, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22730255

RESUMEN

Surface-dependent precipitation: The adsorption of Ni(II) complexes in aqueous solution on (0001) and (1102) α-Al(2)O(3) single-crystal surfaces has been studied (see the X-ray absorption spectra obtained for parallel and perpendicular polarization directions). The use of planar model systems emphasizes the crucial role of the Al(2)O(3) orientation for Ni dispersion with practical implications in catalyst preparation procedures.

10.
Inorg Chem ; 51(6): 3478-89, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22401585

RESUMEN

Ruthenium, a fission product arising from the reprocessing of spent uranium oxide (UOX) fuel, crystallizes in the form of acicular RuO(2) particles in high-level waste containment glass matrices. These particles are responsible for significant modifications in the physicochemical behavior of the glass in the liquid state, and their formation mechanisms are a subject of investigation. The chemical reactions responsible for the crystallization of RuO(2) particles with acicular or polyhedral shape in simplified radioactive waste containment glass are described. In situ high-temperature environmental scanning electron microscopy (ESEM) is used to follow changes in morphology and composition of the ruthenium compounds formed by reactions at high temperature between a simplified RuO(2)-NaNO(3) precursor and a sodium borosilicate glass (SiO(2)-B(2)O(3)-Na(2)O). The key parameter in the formation of acicular or polyhedral RuO(2) crystals is the chemistry of the ruthenium compound under oxidized conditions (Ru(IV), Ru(V)). The precipitation of needle-shaped RuO(2) crystals in the melt might be associated with the formation of an intermediate Ru compound (Na(3)Ru(V)O(4)) before dissolution in the melt, allowing Ru concentration gradients. The formation of polyhedral crystals is the result of the direct incorporation of RuO(2) crystals in the melt followed by an Ostwald ripening mechanism.

11.
Phys Chem Chem Phys ; 13(14): 6531-43, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21380472

RESUMEN

Periodic DFT calculations coupled to a first-principle thermodynamic approach have allowed us to establish a surface phase diagram for the different terminations of the α-Al(2)O(3) (1102) surface in various temperature and water pressure conditions. Theoretical results are compared with previous experimental data from the literature. Under a wide range of temperature and water pressure (including ambient conditions) the most stable surface (denoted C2_1H(2)O in this work) is terminated with singly coordinated hydroxyls on four-fold coordinated aluminium (Al(4C)-µ(1)-OH) while most existing surface models are only considering six-fold coordinated surface Al atoms as in the bulk structure of alumina. The presence of more acidic Al(4C)-µ(1)-OH sites helps explain the low Point of Zero Charge (PZC) (between 5 and 6) determined from the onset of Mo oxoanions adsorption on (1102) single crystal wafers. It is also postulated that another termination (corresponding to the hydration of the non-polar, stoichiometric surface, stable in dehydrated conditions) may be observed in aqueous solution depending on the surface preparation conditions.

12.
Phys Chem Chem Phys ; 11(35): 7527-39, 2009 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19950489

RESUMEN

EXAFS spectroscopy is shown as a tool of prime importance to probe the formation of metal-oxygen-support bonds and unravel the surface molecular structure in oxide-supported systems through two examples: (i) a molecular metal complex (Ni(II) bisglycinate) characterized after impregnation and drying on Al2O3, and (ii) a tungsten oxide nanophase characterized after deposition on zirconia and high temperature thermal treatment (tungstated zirconia catalysts, i.e. WOx/ZrO2). Unlike other spectroscopic techniques, EXAFS at the Ni K-edge proves that a modest thermal activation during the impregnation step triggers the grafting of nickel(II) bisglycinate onto the support: Al next-nearest neighbours are detected when the impregnation is carried out at 60 degrees C instead of room temperature. Characterization of WOx/ZrO2 catalysts shows the presence of W next-nearest neighbours around tungsten, with W-W distances distinctive of edge-shared WO6 octahedra only. The WOx overlayer can thus be described as bidimensional, nanometric slabs of 4 to 5 WO6 units on each side. In these slabs, W octahedra are interconnected to form a more condensed structure than the one present in bulk WO3 (in which linkage through corners exists). Moreover, EXAFS results conclusively demonstrate that the WOx overlayer is directly anchored to the ZrO2 surface by means of W-O-Zr bonds with a W-Zr distance of 3.14 A.


Asunto(s)
Óxido de Aluminio/química , Níquel/química , Compuestos de Tungsteno/química , Espectroscopía de Absorción de Rayos X , Circonio/química , Catálisis , Modelos Moleculares , Estructura Molecular
13.
Chemistry ; 14(20): 6142-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18494021

RESUMEN

There is limited knowledge on the influence of the pore size on surface phenomena (adsorption, dissolution, precipitation, etc.) at the oxide/water interface and a better understanding of the space confinement in nanoscale pores should have practical implications in different areas, such as transport of contaminants in the environment or heterogeneous catalyst preparation, to name a few. To investigate the modifications of the oxide adsorption properties at the oxide/water interface in a confined environment, the surface acidobasic and ion adsorption properties of six different aluminas (5 porous commercial aluminas with pore diameters ranging from 25 to 200 A and 1 non-porous alumina) were determined by means of acid-base titration and Ni(II) adsorption. It is shown that the confinement has a moderate impact on the alumina adsorption capacity because all materials have similar surface charging behaviours and ion saturation coverages. However, a confined geometry has a much larger impact on the ion adsorption constants, which decrease drastically when the average pore diameter decreases below 200 A. These results are discussed in terms of nanoscale pore space confinement.


Asunto(s)
Óxido de Aluminio/química , Nanoestructuras/química , Óxidos/química , Agua/química , Adsorción , Porosidad , Propiedades de Superficie
14.
J Colloid Interface Sci ; 308(2): 429-37, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17286982

RESUMEN

Hydration of gamma-Al2O3 is often reported to occur via the superficial transformation of the alumina surface into aluminum hydroxide-like layers. However, very little evidence has been given so far to support this hypothesis. It is demonstrated here by X-ray diffraction, TEM, electron diffraction, and solubility studies that a second process of hydration takes place that involves the dissolution of alumina and subsequent precipitation of well-shaped Al(OH)3 particles from supersaturated alumina aqueous solution. This process can be observed on a macroscopic scale (XRD, TEM) for any pH5, provided that the contact time between alumina and water exceeds 10 h. The least thermodynamically stable phase of aluminum hydroxide, bayerite, becomes favored compared with gibbsite when the pH of the solution is increased. It is assumed that the rate of formation of bayerite germs is greater than that of gibbsite due to variations in aluminum speciation in solution as a function of pH.

15.
Inorg Chem ; 45(5): 1915-23, 2006 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-16499352

RESUMEN

The synthesis and characterization of a series of mixed W-Zr polynuclear Lindqvist-type complexes, deriving from hexatungstate [W6O19]2-, are described in this work. This family of compounds is built from {W5O18Zr}2- moieties as shown by the X-ray structures of the monomeric [W5O18Zr(H2O)(3-n)(DMSO)n]2- (n = 1 and 2) and dimeric [{W5O18Zr(mu-OH)}2]6- anions. A comprehensive spectroscopic study (183W NMR, FTIR, Raman, EXAFS, and EPR) of these compounds is presented. The goal of incorporating Zr(IV) cations into an oxotungstic core is to obtain spectroscopic models that could mimic the interactions that develop in supported catalysts between the active phase and the supporting oxide. This work tends to show that these molecular compounds can be regarded as soluble structural analogues of WOx/ZrO2 catalysts, which are interesting candidates for the skeletal isomerization of light n-alkanes.

16.
Chemphyschem ; 5(8): 1191-9, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15446742

RESUMEN

The activity and selectivity of tungstated zirconia (WZ) for the conversion of n- into isopentane are dramatically enhanced when the catalyst is modified with Pt and Fe. The state of iron in these catalysts was hitherto only poorly characterized. Therefore, in the present work we investigated the structural and electronic properties of iron in WZ catalysts containing 1 wt% Pt and 1 wt% Fe2O3, by a combination of spectroscopic techniques, namely X-ray absorption spectroscopy (XAS), in situ electron paramagnetic resonance (EPR), and Mössbauer spectroscopy. In the oxidized catalyst, iron is present as Fe(III) and predominantly forms a surface solid solution in which the isolated Fe(III) ions are located in a distorted octahedral environment. A small amount of the total iron (around 10%) is present in the form of small iron oxide particles. Both iron species can be reduced in H2 and then easily reoxidized on exposure to air at room temperature. We infer that the promoter action of iron in these catalysts is intimately related to its redox properties and specifically affects the dehydrogenation activity of the materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...