Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 25(10): 105205, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36238894

RESUMEN

The epithelial splicing regulatory proteins, ESRP1 and ESRP2, are essential for mammalian development through the regulation of a global program of alternative splicing of genes involved in the maintenance of epithelial cell function. To further inform our understanding of the molecular functions of ESRP1, we performed enhanced crosslinking immunoprecipitation coupled with high-throughput sequencing (eCLIP) in epithelial cells of mouse epidermis. The genome-wide binding sites of ESRP1 were integrated with RNA-Seq analysis of alterations in splicing and total gene expression that result from epidermal ablation of Esrp1 and Esrp2. These studies demonstrated that ESRP1 functions in splicing regulation occur primarily through direct binding in a position-dependent manner to promote either exon inclusion or skipping. In addition, we also identified widespread binding of ESRP1 in 3' and 5' untranslated regions (UTRs) of genes involved in epithelial cell function, suggesting that its post-transcriptional functions extend beyond splicing regulation.

2.
PLoS Genet ; 18(9): e1010416, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36129965

RESUMEN

Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish. We found Rbm46 expression was restricted to the mouse germline, detectable in males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice; although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile. Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Sertoli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high throughput assays RNA-seq and 'enhanced crosslinking immunoprecipitation' coupled with RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation and subsequent meiotic initiation. In summary, our studies support an essential role for RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commitment to meiosis in mice.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Espermatogénesis , Espermatogonias , Animales , Diferenciación Celular/genética , Masculino , Mamíferos/genética , Meiosis/genética , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Espermatocitos/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Testículo
3.
Development ; 147(24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33234718

RESUMEN

Irf6 and Esrp1 are important for palate development across vertebrates. In zebrafish, we found that irf6 regulates the expression of esrp1 We detailed overlapping Irf6 and Esrp1/2 expression in mouse orofacial epithelium. In zebrafish, irf6 and esrp1/2 share expression in periderm, frontonasal ectoderm and oral epithelium. Genetic disruption of irf6 and esrp1/2 in zebrafish resulted in cleft of the anterior neurocranium. The esrp1/2 mutant also developed cleft of the mouth opening. Lineage tracing of cranial neural crest cells revealed that the cleft resulted not from migration defect, but from impaired chondrogenesis. Analysis of aberrant cells within the cleft revealed expression of sox10, col1a1 and irf6, and these cells were adjacent to krt4+ and krt5+ cells. Breeding of mouse Irf6; Esrp1; Esrp2 compound mutants suggested genetic interaction, as the triple homozygote and the Irf6; Esrp1 double homozygote were not observed. Further, Irf6 heterozygosity reduced Esrp1/2 cleft severity. These studies highlight the complementary analysis of Irf6 and Esrp1/2 in mouse and zebrafish, and identify a unique aberrant cell population in zebrafish expressing sox10, col1a1 and irf6 Future work characterizing this cell population will yield additional insight into cleft pathogenesis.


Asunto(s)
Factores Reguladores del Interferón/genética , Desarrollo Maxilofacial/genética , Morfogénesis/genética , Proteínas de Unión al ARN/genética , Animales , Ectodermo/crecimiento & desarrollo , Ectodermo/metabolismo , Epitelio/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Mutación/genética , Cresta Neural/crecimiento & desarrollo , Factores de Transcripción SOXE/genética , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Development ; 147(21)2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32253237

RESUMEN

Cleft lip is one of the most common human birth defects. However, there remain a limited number of mouse models of cleft lip that can be leveraged to characterize the genes and mechanisms that cause this disorder. Crosstalk between epithelial and mesenchymal cells underlies formation of the face and palate, but the basic molecular events mediating this crosstalk remain poorly understood. We previously demonstrated that mice lacking the epithelial-specific splicing factor Esrp1 have fully penetrant bilateral cleft lip and palate. In this study, we further investigated the mechanisms leading to cleft lip as well as cleft palate in both existing and new Esrp1 mutant mouse models. These studies included a detailed transcriptomic analysis of changes in ectoderm and mesenchyme in Esrp1-/- embryos during face formation. We identified altered expression of genes previously implicated in cleft lip and/or palate, including components of multiple signaling pathways. These findings provide the foundation for detailed investigations using Esrp1 mutant disease models to examine gene regulatory networks and pathways that are essential for normal face and palate development - the disruption of which leads to orofacial clefting in human patients.


Asunto(s)
Labio Leporino/patología , Fisura del Paladar/patología , Epitelio/patología , Mesodermo/patología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Empalme Alternativo/genética , Animales , Proliferación Celular , Labio Leporino/embriología , Labio Leporino/genética , Fisura del Paladar/embriología , Fisura del Paladar/genética , Ectodermo/embriología , Ectodermo/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Epitelio/embriología , Cara , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Mesodermo/embriología , Ratones Noqueados , Organogénesis/genética , Hueso Paladar/embriología , Hueso Paladar/patología
5.
Nat Methods ; 16(4): 307-310, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30923373

RESUMEN

A major limitation of RNA sequencing (RNA-seq) analysis of alternative splicing is its reliance on high sequencing coverage. We report DARTS (https://github.com/Xinglab/DARTS), a computational framework that integrates deep-learning-based predictions with empirical RNA-seq evidence to infer differential alternative splicing between biological samples. DARTS leverages public RNA-seq big data to provide a knowledge base of splicing regulation via deep learning, thereby helping researchers better characterize alternative splicing using RNA-seq datasets even with modest coverage.


Asunto(s)
Aprendizaje Profundo , Empalme del ARN , ARN/análisis , Análisis de Secuencia de ARN , Algoritmos , Empalme Alternativo , Teorema de Bayes , Epigenómica , Exones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Hep G2 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células K562 , Modelos Estadísticos , ARN/genética , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
6.
Cell Rep ; 25(9): 2417-2430.e5, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485810

RESUMEN

The epithelial-specific splicing regulators Esrp1 and Esrp2 are required for mammalian development, including establishment of epidermal barrier functions. However, the mechanisms by which Esrp ablation causes defects in epithelial barriers remain undefined. We determined that the ablation of Esrp1 and Esrp2 impairs epithelial tight junction (TJ) integrity through loss of the epithelial isoform of Rho GTP exchange factor Arhgef11. Arhgef11 is required for the maintenance of TJs via RhoA activation and myosin light chain (MLC) phosphorylation. Ablation or depletion of Esrp1/2 or Arhgef11 inhibits MLC phosphorylation and only the epithelial Arhgef11 isoform rescues MLC phosphorylation in Arhgef11 KO epithelial cells. Mesenchymal Arhgef11 transcripts contain a C-terminal exon that binds to PAK4 and inhibits RhoA activation byArhgef11. Deletion of the mesenchymal-specific Arhgef11 exon in Esrp1/2 KO epithelial cells using CRISPR/Cas9 restored TJ function, illustrating how splicing alterations can be mechanistically linked to disease phenotypes that result from impaired functions of splicing regulators.


Asunto(s)
Empalme Alternativo/genética , Células Epiteliales/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Uniones Estrechas/metabolismo , Alopecia/patología , Animales , Animales Recién Nacidos , Sistemas CRISPR-Cas/genética , Permeabilidad de la Membrana Celular , Exones/genética , Inflamación/patología , Queratinocitos/metabolismo , Mesodermo/metabolismo , Ratones Noqueados , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
7.
Nat Struct Mol Biol ; 25(10): 928-939, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250226

RESUMEN

During liver regeneration, most new hepatocytes arise via self-duplication; yet, the underlying mechanisms that drive hepatocyte proliferation following injury remain poorly defined. By combining high-resolution transcriptome and polysome profiling of hepatocytes purified from quiescent and toxin-injured mouse livers, we uncover pervasive alterations in messenger RNA translation of metabolic and RNA-processing factors, which modulate the protein levels of a set of splicing regulators. Specifically, downregulation of the splicing regulator ESRP2 activates a neonatal alternative splicing program that rewires the Hippo signaling pathway in regenerating hepatocytes. We show that production of neonatal splice isoforms attenuates Hippo signaling, enables greater transcriptional activation of downstream target genes, and facilitates liver regeneration. We further demonstrate that ESRP2 deletion in mice causes excessive hepatocyte proliferation upon injury, whereas forced expression of ESRP2 inhibits proliferation by suppressing the expression of neonatal Hippo pathway isoforms. Thus, our findings reveal an alternative splicing axis that supports regeneration following chronic liver injury.


Asunto(s)
Empalme Alternativo , Regeneración Hepática/genética , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Proliferación Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/fisiología , Vía de Señalización Hippo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Transducción de Señal/genética
8.
Am J Hum Genet ; 102(6): 1143-1157, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29805042

RESUMEN

Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.


Asunto(s)
Cadherinas/genética , Cateninas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Alelos , Secuencia de Aminoácidos , Animales , Biotinilación , Epitelio/metabolismo , Epitelio/patología , Femenino , Eliminación de Gen , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Hueso Paladar/patología , Linaje , Síndrome , Secuenciación del Exoma , Catenina delta
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1060-1071, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29309924

RESUMEN

Metastatic breast cancer is a leading cause of cancer-related deaths in women worldwide. Patients with triple negative breast cancer (TNBCs), a highly aggressive tumor subtype, have a particularly poor prognosis. Multiple reports demonstrate that altered content of the multicopy mitochondrial genome (mtDNA) in primary breast tumors correlates with poor prognosis. We earlier reported that mtDNA copy number reduction in breast cancer cell lines induces an epithelial-mesenchymal transition associated with metastasis. However, it is unknown whether the breast tumor subtypes (TNBC, Luminal and HER2+) differ in the nature and amount of mitochondrial defects and if mitochondrial defects can be used as a marker to identify tumors at risk for metastasis. By analyzing human primary tumors, cell lines and the TCGA dataset, we demonstrate a high degree of variability in mitochondrial defects among the tumor subtypes and TNBCs, in particular, exhibit higher frequency of mitochondrial defects, including reduced mtDNA content, mtDNA sequence imbalance (mtRNR1:ND4), impaired mitochondrial respiration and metabolic switch to glycolysis which is associated with tumorigenicity. We identified that genes involved in maintenance of mitochondrial structural and functional integrity are differentially expressed in TNBCs compared to non-TNBC tumors. Furthermore, we identified a subset of TNBC tumors that contain lower expression of epithelial splicing regulatory protein (ESRP)-1, typical of metastasizing cells. The overall impact of our findings reported here is that mitochondrial heterogeneity among TNBCs can be used to identify TNBC patients at risk of metastasis and the altered metabolism and metabolic genes can be targeted to improve chemotherapeutic response.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Proteínas Mitocondriales , Proteínas de Neoplasias , Proteínas de Unión al ARN , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
10.
Dev Cell ; 43(3): 318-331.e5, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29107558

RESUMEN

Alternative splicing contributes to gene expression dynamics in many tissues, yet its role in auditory development remains unclear. We performed whole-exome sequencing in individuals with sensorineural hearing loss (SNHL) and identified pathogenic mutations in Epithelial Splicing-Regulatory Protein 1 (ESRP1). Patient-derived induced pluripotent stem cells showed alternative splicing defects that were restored upon repair of an ESRP1 mutant allele. To determine how ESRP1 mutations cause hearing loss, we evaluated Esrp1-/- mouse embryos and uncovered alterations in cochlear morphogenesis, auditory hair cell differentiation, and cell fate specification. Transcriptome analysis revealed impaired expression and splicing of genes with essential roles in cochlea development and auditory function. Aberrant splicing of Fgfr2 blocked stria vascularis formation due to erroneous ligand usage, which was corrected by reducing Fgf9 gene dosage. These findings implicate mutations in ESRP1 as a cause of SNHL and demonstrate the complex interplay between alternative splicing, inner ear development, and auditory function.


Asunto(s)
Empalme Alternativo/genética , Cóclea/embriología , Pérdida Auditiva/genética , Mutación/genética , Proteínas de Unión al ARN/genética , Animales , Diferenciación Celular/genética , Cóclea/metabolismo , Ratones Noqueados
11.
Sci Rep ; 7(1): 3848, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28634384

RESUMEN

Epithelial-Splicing-Regulatory-Protein 1 (Esrp1) is a cell-type specific RNA-binding protein (RBP) that is essential for mammalian development through maintenance of epithelial cell properties including barrier function. Esrp1 also regulates splicing during the epithelial to mesenchymal transition (EMT). It contains three highly conserved RNA recognition motifs (RRMs) in the absence of other clearly defined protein domains. Esrp1 itself is also alternatively spliced to produce multiple protein isoforms. Here we determined that two competing alternative 5' splice sites in exon 12 yield Esrp1 isoforms with differential nucleocytoplasmic localization. We carried out a detailed characterization of the Esrp1 peptide that is sufficient to confer nuclear localization. Furthermore, we identified splice variants encoding distinct nuclear and cytoplasmic isoforms of fusilli, the D. Melanogaster Esrp1 ortholog. Our observations demonstrate that the production of both nuclear and cytoplasmic Esrp1 isoforms through alternative splicing is phylogenetically conserved; strongly suggesting it is biologically significant. Thus, while previous studies have described extensive regulation by nuclear Esrp1 to promote epithelial specific splicing, it will be of great interest to study the contribution of cytoplasmic Esrp1 in maintenance of epithelial cell functions.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ARN/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Exones , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Ratones , Señales de Clasificación de Proteína/genética , Isoformas de ARN , Sitios de Empalme de ARN , Transporte de ARN , Proteínas de Unión al ARN/química
12.
Dev Dyn ; 245(10): 991-1000, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27404344

RESUMEN

BACKGROUND: Abnormalities in ureteric bud (UB) branching morphogenesis lead to congenital anomalies of the kidney and reduced nephron numbers associated with chronic kidney disease (CKD) and hypertension. Previous studies showed that the epithelial fibroblast growth factor receptor 2 (Fgfr2) IIIb splice variant supports ureteric morphogenesis in response to ligands from the metanephric mesenchyme during renal organogenesis. The epithelial-specific splicing regulator Esrp1 is required for expression of Fgfr2-IIIb and other epithelial-specific splice variants. Our objective was to determine whether Esrp1 is required for normal kidney development. RESULTS: Ablation of Esrp1 in mice, alone or together with its paralog Esrp2, was associated with reduced kidney size and increased incidence of renal aplasia. Three-dimensional imaging showed that embryonic Esrp1 knockout (KO) kidneys had fewer ureteric tips and reduced nephron numbers. Analysis of alternative splicing in Esrp-null ureteric epithelial cells by RNA-Seq confirmed a splicing switch in Fgfr2 as well as numerous other transcripts. CONCLUSIONS: Our findings reveal that Esrp1-regulated splicing in ureteric epithelial cells plays an important role in renal development. Defects in Esrp1 KO kidneys likely reflect reduced and/or absent ureteric branching, leading to decreased nephron induction secondary to incorrect Fgfr2 splicing and other splicing alterations. Developmental Dynamics 245:991-1000, 2016. © 2016 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Uréter/citología , Uréter/metabolismo , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Riñón/citología , Riñón/embriología , Masculino , Ratones , Ratones Noqueados , Nefronas/citología , Nefronas/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
Cell Rep ; 15(2): 247-55, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27050523

RESUMEN

Alternative splicing (AS) plays a critical role in cell fate transitions, development, and disease. Recent studies have shown that AS also influences pluripotency and somatic cell reprogramming. We profiled transcriptome-wide AS changes that occur during reprogramming of fibroblasts to pluripotency. This analysis revealed distinct phases of AS, including a splicing program that is unique to transgene-independent induced pluripotent stem cells (iPSCs). Changes in the expression of AS factors Zcchc24, Esrp1, Mbnl1/2, and Rbm47 were demonstrated to contribute to phase-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS during reprogramming by different RNA-binding proteins. Ectopic expression of Esrp1 enhanced reprogramming, in part by modulating the AS of the epithelial specific transcription factor Grhl1. These data represent a comprehensive temporal analysis of the dynamic regulation of AS during the acquisition of pluripotency.


Asunto(s)
Empalme Alternativo/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Reprogramación Celular , Regulación del Desarrollo de la Expresión Génica , Genoma , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Tiempo
14.
Mol Cell Biol ; 36(11): 1704-19, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27044866

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is an essential biological process during embryonic development that is also implicated in cancer metastasis. While the transcriptional regulation of EMT has been well studied, the role of alternative splicing (AS) regulation in EMT remains relatively uncharacterized. We previously showed that the epithelial cell-type-specific proteins epithelial splicing regulatory proteins 1 (ESRP1) and ESRP2 are important for the regulation of many AS events that are altered during EMT. However, the contributions of the ESRPs and other splicing regulators to the AS regulatory network in EMT require further investigation. Here, we used a robust in vitro EMT model to comprehensively characterize splicing switches during EMT in a temporal manner. These investigations revealed that the ESRPs are the major regulators of some but not all AS events during EMT. We determined that the splicing factor RBM47 is downregulated during EMT and also regulates numerous transcripts that switch splicing during EMT. We also determined that Quaking (QKI) broadly promotes mesenchymal splicing patterns. Our study highlights the broad role of posttranscriptional regulation during the EMT and the important role of combinatorial regulation by different splicing factors to fine tune gene expression programs during these physiological and developmental transitions.


Asunto(s)
Empalme Alternativo , Transición Epitelial-Mesenquimal , Redes Reguladoras de Genes , Neoplasias/genética , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Modelos Biológicos , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN
15.
Nat Commun ; 6: 8768, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26531099

RESUMEN

Although major genetic networks controlling early liver specification and morphogenesis are known, the mechanisms responsible for postnatal hepatic maturation are poorly understood. Here we employ global analyses of the mouse liver transcriptome to demonstrate that postnatal remodelling of the liver is accompanied by large-scale transcriptional and post-transcriptional transitions that are cell-type-specific and temporally coordinated. Combining detailed expression analyses with gain- and loss-of-function studies, we identify epithelial splicing regulatory protein 2 (ESRP2) as a conserved regulatory factor that controls the neonatal-to-adult switch of ∼20% of splice isoforms in mouse and human hepatocytes. The normal shift in splicing coincides tightly with dramatic postnatal induction of ESRP2 in hepatocytes. We further demonstrate that forced expression of ESRP2 in immature mouse and human hepatocytes is sufficient to drive a reciprocal shift in splicing and causes various physiological abnormalities. These findings define a direct role for ESRP2 in the generation of conserved repertoires of adult splice isoforms that facilitate terminal differentiation and maturation of hepatocytes.


Asunto(s)
Empalme Alternativo/genética , Regulación del Desarrollo de la Expresión Génica , Hepatocitos/metabolismo , Hígado/metabolismo , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN/genética , Animales , Western Blotting , Diferenciación Celular , Humanos , Inmunohistoquímica , Hibridación in Situ , Hígado/crecimiento & desarrollo , Ratones , Ratones Noqueados , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Elife ; 42015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371508

RESUMEN

Tissue- and cell-type-specific regulators of alternative splicing (AS) are essential components of posttranscriptional gene regulation, necessary for normal cellular function, patterning, and development. Mice with ablation of Epithelial splicing regulatory protein (Esrp1) develop cleft lip and palate. Loss of both Esrp1 and its paralog Esrp2 results in widespread developmental defects with broad implications to human disease. Deletion of the Esrps in the epidermis revealed their requirement for establishing a proper skin barrier, a primary function of epithelial cells comprising the epidermis. We profiled the global Esrp-mediated splicing regulatory program in epidermis, which revealed large-scale programs of epithelial cell-type-specific splicing required for epithelial cell functions. These mice represent a valuable model for evaluating the essential role for AS in development and function of epithelial cells, which play essential roles in tissue homeostasis in numerous organs, and provide a genetic tool to evaluate important functional properties of epithelial-specific splice variants in vivo.


Asunto(s)
Estructuras Animales/embriología , Células Epiteliales/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/genética
17.
Wiley Interdiscip Rev RNA ; 6(3): 311-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25630614

RESUMEN

Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact.


Asunto(s)
Empalme Alternativo , Predisposición Genética a la Enfermedad , Modelos Genéticos , Mutación , Esclerosis Amiotrófica Lateral/genética , Trastorno del Espectro Autista/genética , Cardiomiopatía Dilatada/genética , Secuencia de Consenso , Transición Epitelial-Mesenquimal/genética , Humanos , Distrofia Miotónica/genética , Neoplasias/genética
18.
Adv Exp Med Biol ; 825: 267-302, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25201109

RESUMEN

The epithelial to mesenchymal transition (EMT) and reverse mesenchymal to epithelial transition (MET) are developmentally conserved processes that are essential for patterning of developing embryos and organs. The EMT/MET are further utilized in wound healing, but they can also be hijacked by cancer cells to promote tumor progression and metastasis. The molecular pathways governing these processes have historically focused on the transcriptional regulation and networks that control them. Indeed, global profiling of transcriptional changes has provided a wealth of information into how these networks are regulated, the downstream targets, and functional consequence of alterations to the global transcriptome. However, recent evidence has revealed that the posttranscriptional landscape of the cell is also dramatically altered during the EMT/MET and contributes to changes in cell behavior and phenotypes. While studies of this aspect of EMT biology are still in their infancy, recent progress has been achieved by the identification of several RNA binding proteins (RBPs) that regulate splicing, polyadenylation, mRNA stability, and translational control during EMT. This chapter focuses on the global impact of RBPs that regulate mRNA maturation as well as outlines the functional impact of several key posttranscriptional changes during the EMT. The growing evidence of RBP involvement in the cellular transformation during EMT underscores that a coordinated regulation of both transcriptional and posttranscriptional changes is essential for EMT. Furthermore, new discoveries into these events will paint a more detailed picture of the transcriptome during the EMT/MET and provide novel molecular targets for treatment of human diseases.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Genoma Humano/fisiología , Procesamiento Postranscripcional del ARN/fisiología , Proteínas de Unión al ARN , Transcriptoma/fisiología , Animales , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Mol Cell ; 54(6): 903-904, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24950376

RESUMEN

Using Caenorhabditis elegans as a model system, Norris et al. (2014) define complex combinatorial regulation of alternative splicing at single-neuron resolution and illustrate functional coherence among components of a splicing regulatory network controlled by a neuronal splicing factor.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Neuronas Colinérgicas/citología , Neuronas GABAérgicas/citología , Proteínas de Unión al ARN/fisiología , Transmisión Sináptica/genética , Sintaxina 1/genética , Animales
20.
Dev Cell ; 27(5): 560-73, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24331928

RESUMEN

Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here, we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2 and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoform expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal-but not the epithelial-isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion.


Asunto(s)
Empalme Alternativo/fisiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/secundario , Transición Epitelial-Mesenquimal/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Secuencia de Aminoácidos , Animales , Progresión de la Enfermedad , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Invasividad Neoplásica , Trasplante de Neoplasias , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...