Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Neuroendocrinology ; 114(3): 207-222, 2024.
Article En | MEDLINE | ID: mdl-37848008

INTRODUCTION: Relapse is a major treatment barrier for opioid use disorder. Environmental cues become associated with the rewarding effects of opioids and can precipitate relapse, even after numerous unreinforced cue presentations, due to deficits in extinction memory recall (EMR). Estradiol (E2) modulates EMR of fear-related cues, but it is unknown whether E2 impacts EMR of reward cues and what brain region(s) are responsible for E2s effects. Here, we hypothesize that inhibition of E2 signaling in the basolateral amygdala (BLA) will impair EMR of a heroin-associated cue in both male and female rats. METHODS: We pharmacologically manipulated E2 signaling to characterize the role of E2 in the BLA on heroin-cue EMR. Following heroin self-administration, during which a light/tone cue was co-presented with each heroin infusion, rats underwent cued extinction to extinguish the conditioned association between the light/tone and heroin. During extinction, E2 signaling in the BLA was blocked by an aromatase inhibitor or specific estrogen receptor (ER) antagonists. The next day, subjects underwent a cued test to assess heroin-cue EMR. RESULTS: In both experiments, females took more heroin than males (mg/kg) and had higher operant responding during cued extinction. Inhibition of E2 synthesis in the BLA impaired heroin-cue EMR in both sexes. Notably, E2s actions are mediated by different ER mechanisms, ERα in males but ERß in females. CONCLUSIONS: This study is the first to demonstrate a behavioral role for centrally-produced E2 in the BLA and that E2 also impacts EMR of reward-associated stimuli in both sexes.


Basolateral Nuclear Complex , Humans , Rats , Male , Female , Animals , Basolateral Nuclear Complex/physiology , Heroin/pharmacology , Cues , Extinction, Psychological/physiology , Recurrence
2.
J Biol Chem ; 300(2): 105606, 2024 Feb.
Article En | MEDLINE | ID: mdl-38159862

Previous cryo-electron micrographs suggested that the skeletal muscle Ca2+ release channel, ryanodine receptor (RyR)1, is regulated by intricate interactions between the EF hand Ca2+ binding domain and the cytosolic loop (S2-S3 loop). However, the precise molecular details of these interactions and functional consequences of the interactions remain elusive. Here, we used molecular dynamics simulations to explore the specific amino acid pairs involved in hydrogen bond interactions within the EF hand-S2-S3 loop interface. Our simulations unveiled two key interactions: (1) K4101 (EF hand) with D4730 (S2-S3 loop) and (2) E4075, Q4078, and D4079 (EF hand) with R4736 (S2-S3 loop). To probe the functional significance of these interactions, we constructed mutant RyR1 complementary DNAs and expressed them in HEK293 cells for [3H]ryanodine binding assays. Our results demonstrated that mutations in the EF hand, specifically K4101E and K4101M, resulted in reduced affinities for Ca2+/Mg2+-dependent inhibitions. Interestingly, the K4101E mutation increased the affinity for Ca2+-dependent activation. Conversely, mutations in the S2-S3 loop, D4730K and D4730N, did not significantly change the affinities for Ca2+/Mg2+-dependent inhibitions. Our previous finding that skeletal disease-associated RyR1 mutations, R4736Q and R4736W, impaired Ca2+-dependent inhibition, is consistent with the current results. In silico mutagenesis analysis aligned with our functional data, indicating altered hydrogen bonding patterns upon mutations. Taken together, our findings emphasize the critical role of the EF hand-S2-S3 loop interaction in Ca2+/Mg2+-dependent inhibition of RyR1 and provide insights into potential therapeutic strategies targeting this domain interaction for the treatment of skeletal myopathies.


EF Hand Motifs , Ryanodine Receptor Calcium Release Channel , Humans , Calcium/metabolism , HEK293 Cells , Muscle, Skeletal/metabolism , Mutation , Ryanodine/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism
3.
Neuropharmacology ; 240: 109711, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37673333

Return to methamphetamine (meth) use is part of an overarching addictive disorder hallmarked by cognitive sequela and cortical dysfunction in individuals who use meth chronically. In rats, long access meth self-administration produces object recognition memory deficits due to drug-induced plasticity within the perirhinal cortex (PRH). PRH projections are numerous and include the medial prefrontal cortex (mPFC). To evaluate the role of the PRH-mPFC reciprocal circuit in novel object recognition memory, a rgAAV encoding GFP-tagged Cre recombinase was infused into the PRH or the mPFC and rats were tested for recognition memory. On test day, one group explored both familiar and novel objects. A second group explored only familiar objects. GFP and Fos expression were visualized in the mPFC or PRH. During exploration, PRH neurons receiving input from the mPFC were equally activated by exploration of novel and familiar objects. In contrast, PRH neurons that provide input to the mPFC were disproportionately activated by novel objects. Further, the percent of Fos + cells in the PRH positively correlated with recognition memory. As such, the flow of communication appears to be from the PRH to the mPFC. In agreement with this proposed directionality, chemogenetic inhibition of the PRH-mPFC circuit impaired object recognition memory, whereas chemogenetic activation in animals with a history of long access meth self-administration reversed the meth-induced recognition memory deficit. This finding informs future work aimed at understanding the role of the PRH, mPFC, and their connectivity in meth associated memory deficits. These data suggest a more complex circuitry governing recognition memory than previously indicated with anatomical or lesion studies.


Methamphetamine , Rats , Animals , Recognition, Psychology , Memory Disorders/metabolism , Prefrontal Cortex/metabolism , Visual Perception
4.
Addict Biol ; 28(5): e13279, 2023 05.
Article En | MEDLINE | ID: mdl-37186441

Relapse to drug seeking involves transient synaptic remodelling that occurs in response to drug-associated cues. This remodelling includes activation of matrix metalloproteinases (MMPs) to initiate catalytic signalling in the extracellular matrix in the nucleus accumbens core (NAcore). We hypothesized that MMP activity would be increased in the NAcore during cue-induced methamphetamine (meth) seeking in a rat model of meth use and relapse. Male and female rats had indwelling jugular catheters and bilateral intracranial cannula targeting the NAcore surgically implanted. Following recovery, rats underwent meth or saline self-administration (6 h/day for 15 days) in which active lever responding was paired with a light + tone stimulus complex, followed by home cage abstinence. Testing occurred after 7 or 30 days of abstinence. On test day, rats were microinjected with a fluorescein isothiocyanate (FITC)-quenched gelatin substrate that fluoresces following cleavage by MMP-2,9, allowing for the quantification of gelatinase activity during cued-relapse testing. MMP-2,9 activity was significantly increased in the NAcore by meth cues presentation after 7 and 30 days of abstinence, indicating that remodelling by MMPs occurs during presentation of meth associated cues. Surprisingly, although cue-induced seeking increased between Days 7 and 30, MMP-2,9 activity did not increase. These findings indicate that although MMP activation is elicited during meth cue-induced seeking, MMP activation did not parallel the meth seeking that occurs during extended drug abstinence.


Central Nervous System Stimulants , Methamphetamine , Rats , Male , Female , Animals , Methamphetamine/pharmacology , Rats, Sprague-Dawley , Cues , Matrix Metalloproteinase 2 , Drug-Seeking Behavior , Recurrence , Self Administration , Nucleus Accumbens , Central Nervous System Stimulants/pharmacology , Extinction, Psychological
5.
Elife ; 122023 02 13.
Article En | MEDLINE | ID: mdl-36780219

Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.


Anhedonia , Basic Helix-Loop-Helix Transcription Factors , Social Defeat , Animals , Humans , Mice , Anhedonia/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Depression , Mice, Inbred C57BL , Prefrontal Cortex/physiology , Social Behavior , Stress, Psychological/psychology , Synapses/metabolism
6.
Neuroendocrinology ; 113(11): 1112-1126, 2023.
Article En | MEDLINE | ID: mdl-36709749

INTRODUCTION: There are numerous pharmacologic treatments for opioid use disorder (OUD), but none that directly target the underlying addictive effects of opioids. Oxytocin, a peptide hormone produced in the paraventricular nucleus (PVN) of the hypothalamus, has been investigated as a potential therapeutic for OUD. Promising preclinical and clinical results have been reported, but the brain region(s) and mechanism(s) by which oxytocin impacts reward processes remain undetermined. METHODS: Here, we assess peripherally administered oxytocin's impacts on cued reinstatement of heroin seeking following forced abstinence and its effects on neuronal activation in the PVN and key projection regions. We also examine how designer receptors exclusively activated by designer drug (DREADD)-mediated activation or inhibition of oxytocinergic PVN neurons alters cued heroin seeking and social interaction. RESULTS: As predicted, peripheral oxytocin administration successfully decreased cued heroin seeking on days 1 and 30 of abstinence. Oxytocin administration also led to increased neuronal activity within the PVN and the central amygdala (CeA). Activation of oxytocinergic PVN neurons with an excitatory (Gq) DREADD did not impact cued reinstatement or social interaction. In contrast, suppression with an inhibitory (Gi) DREADD reduced heroin seeking on abstinence day 30 and decreased time spent interacting with a novel conspecific. DISCUSSION: These findings reinforce oxytocin's therapeutic potential for OUD, the basis for which may be driven in part by increased PVN-CeA circuit activity. Our results also suggest that oxytocin has distinct signaling and/or other mechanisms of action to produce these effects, as inhibition, but not activation, of oxytocinergic PVN neurons did not recapitulate the suppression in heroin seeking.


Oxytocin , Paraventricular Hypothalamic Nucleus , Oxytocin/pharmacology , Heroin/pharmacology , Hypothalamus , Brain
7.
Front Neurosci ; 15: 784365, 2021.
Article En | MEDLINE | ID: mdl-34955731

Rationale: Stress plays a dual role in substance use disorders as a precursor to drug intake and a relapse precipitant. With heroin use at epidemic proportions in the United States, understanding interactions between stress disorders and opioid use disorder is vital and will aid in treatment of these frequently comorbid conditions. Objectives: Here, we combine assays of stress and contingent heroin self-administration (SA) to study behavioral adaptations in response to stress and heroin associated cues in male and female rats. Methods: Rats underwent acute restraint stress paired with an odor stimulus and heroin SA for subsequent analysis of stress and heroin cue reactivity. Lofexidine was administered during heroin SA and reinstatement testing to evaluate its therapeutic potential. Rats also underwent tests on the elevated plus maze, locomotor activity in a novel environment, and object recognition memory following stress and/or heroin. Results: A history of stress and heroin resulted in disrupted behavior on multiple levels. Stress rats avoided the stress conditioned stimulus and reinstated heroin seeking in response to it, with males reinstating to a greater extent than females. Lofexidine decreased heroin intake, reinstatement, and motor activity. Previous heroin exposure increased time spent in the closed arms of an elevated plus maze, activity in a round novel field, and resulted in object recognition memory deficits. Discussion: These studies report that a history of stress and heroin results in maladaptive coping strategies and suggests a need for future studies seeking to understand circuits recruited in this pathology and eventually help develop therapeutic approaches.

8.
Neuropsychopharmacology ; 46(10): 1848-1856, 2021 09.
Article En | MEDLINE | ID: mdl-34226657

Exposure to acute stress can increase vulnerability to develop or express many psychiatric disorders, including post-traumatic stress disorder. We hypothesized that stress-induced psychiatric vulnerability is associated with enduring neuroplasticity in the nucleus accumbens core because stress exposure can alter drug addiction-related behaviors that are associated with accumbens synaptic plasticity. We used a single 2-h stress session and 3 weeks later exposed male and female rats to stress-conditioned odors in a modified defensive burying task, and quantified both active and avoidant coping strategies. We measured corticosterone, dendritic spine and astrocyte morphology in accumbens, and examined reward sensitivity using a sucrose two-bottle choice and operant sucrose self-administration. Exposure to stress odor increased burying (active coping) and immobility (avoidant coping) in the defensive burying task in female and male rats. Systemic corticosterone was transiently increased by both ongoing acute restraint stress and stress-conditioned odors. Three weeks after administering acute restraint stress, we observed increased dendritic spine density and head diameter, and decreased synaptic association with astroglia and the astroglial glutamate transporter, GLT-1. Exposure to conditioned stress further increased head diameter without affecting spine density or astroglial morphology, and this increase by conditioned stress was correlated with burying behavior. Finally, we found that stress-exposed females have a preference for sweet solutions and higher motivation to seek sucrose than stressed male rats. We conclude that acute stress produced enduring plasticity in accumbens postsynapses and associated astroglia. Moreover, conditioned stress odors induced active behavioral coping strategies that were correlated with dendritic spine morphology.


Cues , Neuronal Plasticity , Animals , Drug-Seeking Behavior , Female , Male , Nucleus Accumbens , Rats , Rats, Sprague-Dawley
9.
Psychopharmacology (Berl) ; 237(6): 1709-1721, 2020 Jun.
Article En | MEDLINE | ID: mdl-32125483

RATIONALE: There is a robust relationship between anxiety disorders, including post-traumatic stress disorder (PTSD) and substance abuse. In fact, 30-50% of people seeking treatment for substance abuse have a comorbid diagnosis for PTSD. Heroin use is at epic proportions in the USA and is commonly used by people with co-occurring PTSD symptoms and substance use disorder. OBJECTIVES: Here, we combined animal assays of acute restraint stress and contingent heroin self-administration (SA) to study comorbidity between stress disorders and opioid use disorder and identify shifts in anxiety-like behaviors following stress and/or heroin in response to a stress-conditioned cue. Our objective for this approach was to determine the long-term impact of acute restraint stress and heroin self-administration on stress reactivity and basic reward processes. METHODS: We used 2-h acute restraint stress paired with an odor stimulus to condition a stress cue (CS) for testing of subsequent stress reactivity in a burying task and reinstatement and extinction to heroin seeking. Rats were also tested for social place preference for measures of social reward and anxiety-like behaviors. RESULTS: Stress rats exhibited multiple levels of disrupted behavior including enhanced acquisition of heroin intake and reinstatement in response to the stress CS, as well as delayed extinction in response to the stress CS. All rats developed a social place preference, but stress rats spent more time in nose-to-nose contact with the unfamiliar rat while heroin rats spent time exploring the chamber. In the burying task, stress shortened latencies to bury the CS and increased burying and immobility in male and female rats relative to sham counterparts. CONCLUSIONS: Acute restraint stress results in anxiety-like behaviors and a stress-associated cue is sufficient to reinstate extinguished heroin seeking. This project has the potential to elucidate the complex relationship between stress/anxiety disorders, including some PTSD-like characteristics, and the onset, maintenance, and relapse to heroin seeking.


Extinction, Psychological , Heroin Dependence/psychology , Heroin/administration & dosage , Restraint, Physical/psychology , Stress, Psychological/psychology , Animals , Cues , Extinction, Psychological/physiology , Female , Male , Odorants , Random Allocation , Rats , Rats, Sprague-Dawley , Self Administration
10.
J Biol Chem ; 293(50): 19501-19509, 2018 12 14.
Article En | MEDLINE | ID: mdl-30341173

Cryo-electron micrograph studies recently have identified a Ca2+-binding site in the 2,200-kDa ryanodine receptor ion channel (RyR1) in skeletal muscle. To clarify the role of this site in regulating RyR1 activity, here we applied mutational, electrophysiological, and computational methods. Three amino acid residues that interact directly with Ca2+ were replaced, and these RyR1 variants were expressed in HEK293 cells. Single-site RyR1-E3893Q, -E3893V, -E3967Q, -E3967V, and -T5001A variants and double-site RyR1-E3893Q/E3967Q and -E3893V/E3967V variants displayed cellular Ca2+ release in response to caffeine, which indicated that they retained functionality as caffeine-sensitive, Ca2+-conducting channels in the HEK293 cell system. Using [3H]ryanodine binding and single-channel measurements of membrane isolates, we found that single- and double-site RyR1-E3893 and -E3967 variants are not activated by Ca2+ We also noted that RyR1-E3893Q/E3967Q and -E3893V/E3967V variants maintain caffeine- and ATP-induced activation and that RyR1-E3893Q/E3967Q is inhibited by Mg2+ and elevated Ca2+ RyR1-T5001A exhibited decreased Ca2+ sensitivity compared with WT-RyR1 in single-channel measurements. Computational methods suggested that electrostatic interactions between Ca2+ and negatively charged glutamate residues have a critical role in transducing the functional effects of Ca2+ on RyR1. We conclude that the removal of negative charges in the recently identified RyR1 Ca2+-binding site impairs RyR1 activation by physiological Ca2+ concentrations and results in loss of binding to Ca2+ or reduced Ca2+ affinity of the binding site.


Calcium/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , HEK293 Cells , Humans , Models, Molecular , Protein Conformation , Ryanodine Receptor Calcium Release Channel/chemistry
...