Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(7): e2400059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38627301

RESUMEN

Chagas disease is a neglected tropical parasitic disease caused by the protozoan Trypanosoma cruzi. Worldwide, an estimated 8 million people are infected with T. cruzi, causing more than 10,000 deaths per year. Currently, only two drugs, nifurtimox and benznidazole (BNZ), are approved for its treatment. However, both are ineffective during the chronic phase, show toxicity, and produce serious side effects. This work aimed to obtain and evaluate novel 2-nitroimidazole-N-acylhydrazone derivatives analogous to BNZ. The design of these compounds used the two important pharmacophoric subunits of the BNZ prototype, the 2-nitroimidazole nucleus and the benzene ring, and the bioisosterism among the amide group of BNZ and N-acylhydrazone. The 27 compounds were obtained by a three-step route in 57%-98% yields. The biological results demonstrated the potential of this new class of compounds, since eight compounds were potent and selective in the in vitro assay against T. cruzi amastigotes and trypomastigotes using a drug-susceptible strain of T. cruzi (Tulahuen) (IC50 = 4.3-6.25 µM) and proved to be highly selective with low cytotoxicity on L929 cells. The type I nitroreductase (TcNTR) assay suggests that the new compounds may act as substrates for this enzyme.


Asunto(s)
Hidrazonas , Nitroimidazoles , Pruebas de Sensibilidad Parasitaria , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Nitroimidazoles/farmacología , Nitroimidazoles/química , Nitroimidazoles/síntesis química , Relación Estructura-Actividad , Animales , Hidrazonas/farmacología , Hidrazonas/síntesis química , Hidrazonas/química , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Humanos
2.
Med Chem ; 18(5): 521-535, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34758718

RESUMEN

BACKGROUND: Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. OBJECTIVE: This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. METHODS: We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. RESULTS: The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. CONCLUSION: Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.


Asunto(s)
Antimaláricos , Malaria , Quinolinas , Antimaláricos/química , Antimaláricos/farmacología , Humanos , Malaria/tratamiento farmacológico , Plasmodium falciparum , Quinolinas/química , Triazoles/química , Triazoles/farmacología
3.
Curr Org Synth ; 18(6): 535-546, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33655837

RESUMEN

The subclass of compounds that have the nucleus 1, 4-naphthoquinone is the most diverse class of quinones, which have a large number of substances and have useful applications ranging from medicinal chemistry to application in materials with special properties. The introduction of one or two substituents with the sulfur heteroatom in the naphthoquinone nucleus generates products containing alkyl and aryl groups that amplify certain biological properties against bacteria, viruses, and fungi. There are several methods of preparing these compounds, mainly from low molecular weight naphthoquinones with two electrophilic sites capable of reacting with sulfides generating diversity and new classes of compounds, including new sulfur heterocycles and sulfur heterocycles fused with naphthoquinones. These compounds have been shown to be bioactive against several biological targets. This review will describe the methods of their synthesis and, when applicable, their biological activities.


Asunto(s)
Naftoquinonas , Virus , Bacterias , Hongos , Naftoquinonas/farmacología , Azufre
4.
Med Chem ; 17(10): 1073-1085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33155925

RESUMEN

BACKGROUND: Several quinones are on the pharmaceutical market as drugs for the treatment of several diseases. OBJECTIVE: The aim of this review was to provide an overview of the quinones that have become drugs for several therapeutic applications. METHODS: We have comprehensively and critically discussed all the information available in the literature about quinone-based drugs. RESULTS: In this review, the various aspects of the chemistry and biochemistry of these drugs are highlighted, including their repositioning, drug combination and their new uses. CONCLUSION: A number of studies related to quinone drugs for different pharmaceutical uses show that the interest in new applications is still increasing in recent years.


Asunto(s)
Química Farmacéutica , Preparaciones Farmacéuticas , Benzoquinonas , Quinonas
5.
Bioorg Med Chem ; 27(6): 1002-1008, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30737133

RESUMEN

Malaria remains a major public health problem worldwide, and it is responsible for high rates of morbidity and mortality. Resistance to current antimalarial drugs has been identified, and new drugs are urgently needed. In this study, we designed and synthesized seventeen novel quinolines based on the structures of mefloquine ((2,8-bis(trifluoromethyl)quinolin-4-yl)(piperidin-2-yl)methanol) and amodiaquine (4-((7-chloroquinolin-4-yl)amino)-2-((diethylamino)methyl)phenol) using ring bioisosteric replacement and molecular hybridization of the functional groups. The compounds were evaluated in vitro against Plasmodium falciparum and in vivo in mice infected with P. berghei. All derivatives presented anti-P. falciparum activity with IC50 values ranging from 0.083 to 33.0 µM. The compound with the best anti-P. falciparum activity was N-(5-methyl-4H-1,2,4-triazol-3-yl)-2,8-bis(trifluoromethyl)quinolin-4-amine (12) which showed an IC50 of 0.083 µM. The three most active compounds were selected for antimalarial activity tests against P. berghei-infected mice. Compound 12 was the most active on the 5th day after infection, reducing parasitemia by 66%, which is consistent with its in vitro activity. This is an important result as 12, a simpler molecule than mefloquine, does not contain the stereogenic center, and consequently, its synthesis in the laboratory is easier and less expensive. This system proved promising for the design of potential antimalarial compounds.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacología , Animales , Antimaláricos/química , Antimaláricos/uso terapéutico , Línea Celular , Descubrimiento de Drogas , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Halogenación , Haplorrinos , Humanos , Metilación , Ratones , Quinolinas/química , Quinolinas/uso terapéutico
6.
Mem. Inst. Oswaldo Cruz ; 110(4): 492-499, 09/06/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-748858

RESUMEN

Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO 2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.


Asunto(s)
Animales , Ratones , Daño del ADN/efectos de los fármacos , Nitroimidazoles/química , Nitroimidazoles/toxicidad , Salmonella/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Pruebas de Mutagenicidad , Relación Estructura-Actividad
7.
Mem Inst Oswaldo Cruz ; 110(4): 492-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26018452

RESUMEN

Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO 2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.


Asunto(s)
Daño del ADN/efectos de los fármacos , Nitroimidazoles/química , Nitroimidazoles/toxicidad , Salmonella/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Ratones , Pruebas de Mutagenicidad , Relación Estructura-Actividad
8.
ScientificWorldJournal ; 2013: 287319, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24311974

RESUMEN

Chagas disease is responsible for a large number of human infections and many are also at risk of infection. There is no effective drug for Chagas disease treatment. The Institute of Pharmaceutical Technology at Fiocruz, Brazil, has designed three nitro analogs of the nitroimidazole-thiadiazole, megazol: two triazole analogs PTAL 05-02 and PAMT 09 and a pyrazole analog PTAL 04-09. A set of Salmonella enterica serovar Typhimurium strains were used in the bacterial reverse mutation test (Ames test) to determine the mutagenicity and cytotoxicity of megazol and its nitro analogs. Megazol presented positive mutagenic activity at very low concentration, either with or without metabolic activation S9 mix. The mutagenic response of the analogs was detected at higher concentration than the lowest megazol concentration to yield mutagenic activity showing that new advances can be made to develop new analogs. The micronucleus test with rat macrophage cells was used in the genotoxic evaluation. The analogs were capable of inducing micronucleus formation and showed cytotoxic effects. PTAL 04-09 structural modifications might be better suitable for the design of promising new drugs candidate for Chagas' disease treatment.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Daño del ADN , Tripanocidas , Trypanosoma cruzi/metabolismo , Animales , Línea Celular , Enfermedad de Chagas/metabolismo , Humanos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Mutagénesis/efectos de los fármacos , Ratas , Salmonella enterica/genética , Salmonella enterica/metabolismo , Tiadiazoles/química , Tiadiazoles/farmacología , Triazoles/química , Triazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/genética
9.
Molecules ; 17(7): 8285-302, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22781441

RESUMEN

According to the World Health Organization, half of the World's population, approximately 3.3 billion people, is at risk for developing malaria. Nearly 700,000 deaths each year are associated with the disease. Control of the disease in humans still relies on chemotherapy. Drug resistance is a limiting factor, and the search for new drugs is important. We have designed and synthesized new 2-(trifluoromethyl)[1,2,4]triazolo[1,5-a]pyrimidine derivatives based on bioisosteric replacement of functional groups on the anti-malarial compounds mefloquine and amodiaquine. This approach enabled us to investigate the impact of: (i) ring bioisosteric replacement; (ii) a CF3 group substituted at the 2-position of the [1,2,4]triazolo[1,5-a]pyrimidine scaffold and (iii) a range of amines as substituents at the 7-position of the of heterocyclic ring; on in vitro activity against Plasmodium falciparum. P. falciparum dihydroorotate dehydrogenase (PfDHODH) through strong hydrogen bonds. The presence of a trifluoromethyl group at the 2-position of the [1,2,4]triazolo[1,5-a]pyrimidine ring led to increased drug activity. Thirteen compounds were found to be active, with IC50 values ranging from 0.023 to 20 µM in the anti-HRP2 and hypoxanthine assays. The selectivity index (SI) of the most active derivatives 5, 8, 11 and 16 was found to vary from 1,003 to 18,478.


Asunto(s)
Antimaláricos/farmacología , Azoles/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Azoles/síntesis química , Azoles/química , Muerte Celular/efectos de los fármacos , Cloroquina/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Células Hep G2 , Humanos , Modelos Moleculares , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Quinolinas/química
10.
Mem Inst Oswaldo Cruz ; 103(4): 358-62, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18660990

RESUMEN

The leishmanicidal activity of four batches of meglumine antimoniate, produced in Farmanguinhos-Fiocruz, Brazil (TAMs), was assessed and compared to Glucantime-Aventis Pharma Ltda. Using the amastigote-like in vitro model, the active concentrations of Sb v varied from 10microg/ml to 300microg/ml for L. (L.) chagasi and from 50microg/ml to 300microg/ml for L. (L.) amazonensis, with no statistically significant differences among the four batches of TAMs and Glucantime. The inhibitory concentrations (IC50) determined by the amastigote-infected macrophage model for TAM01/03 and Glucantime were, respectively: 26.3microg/ml and 127.6microg/ml for L. chagasi, 15.4microg /ml and 22.9microg/ml for L. amazonensis, and 12.1 microg/ml and 24.2microg/ml for L. (V.) braziliensis. The activities of the four batches of TAMs were confirmed in an in vivo model by assessing, during eight weeks skin lesions caused by L. braziliensis in hamster that were treated with 20mg Sb v/Kg/day for 30 consecutive days. The meglumine antimoniate produced by Farmanguinhos was as effective as the reference drug, Glucantime-Aventis, against three species of Leishmania that are of medical importance in Brazil.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Meglumina/farmacología , Compuestos Organometálicos/farmacología , Animales , Cricetinae , Concentración 50 Inhibidora , Antimoniato de Meglumina , Pruebas de Sensibilidad Parasitaria
11.
Mem. Inst. Oswaldo Cruz ; 103(4): 358-362, June 2008. graf, tab
Artículo en Inglés | LILACS | ID: lil-486865

RESUMEN

The leishmanicidal activity of four batches of meglumine antimoniate, produced in Farmanguinhos-Fiocruz, Brazil (TAMs), was assessed and compared to Glucantime®-Aventis Pharma Ltda. Using the amastigote-like in vitro model, the active concentrations of Sb v varied from 10µg/ml to 300 µg/ml for L. (L.) chagasi and from 50µg/ml to 300µg/ml for L. (L.) amazonensis, with no statistically significant differences among the four batches of TAMs and Glucantime®. The inhibitory concentrations (IC50) determined by the amastigote-infected macrophage model for TAM01/03 and Glucantime® were, respectively: 26.3µg/ml and 127.6µg/ml for L. chagasi, 15.4µg /ml and 22.9µg/ml for L. amazonensis, and 12.1µg/ml and 24.2µg/ml for L. (V.) braziliensis. The activities of the four batches of TAMs were confirmed in an in vivo model by assessing, during eight weeks skin lesions caused by L. braziliensis in hamster that were treated with 20mg Sb v/Kg/day for 30 consecutive days. The meglumine antimoniate produced by Farmanguinhos was as effective as the reference drug, Glucantime®-Aventis, against three species of Leishmania that are of medical importance in Brazil.


Asunto(s)
Animales , Cricetinae , Antiprotozoarios/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Meglumina/farmacología , Compuestos Organometálicos/farmacología , Pruebas de Sensibilidad Parasitaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA