Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofactors ; 50(3): 558-571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38149762

RESUMEN

Erythrocytes play a fundamental role in oxygen delivery to tissues and binding to inflammatory mediators. Evidences suggest that dysregulated erythrocyte function could contribute to the pathophysiology of several neurodegenerative diseases. We aimed to evaluate changes in morphological, biomechanical, and biophysical properties of erythrocytes from amyotrophic lateral sclerosis (ALS) patients, as new areas of study in this disease. Blood samples were collected from ALS patients, comparing with healthy volunteers. Erythrocytes were assessed using atomic force microscopy (AFM) and zeta potential analysis. The patients' motor and respiratory functions were evaluated using the revised ALS Functional Rating Scale (ALSFRS-R) and percentage of forced vital capacity (%FVC). Patient survival was also assessed. Erythrocyte surface roughness was significantly smoother in ALS patients, and this parameter was a predictor of faster decline in ALSFRS-R scores. ALS patients exhibited higher erythrocyte stiffness, as indicated by reduced AFM tip penetration depth, which predicted a faster ALSFRS-R score and respiratory subscore decay. A lower negative charge on the erythrocyte membrane was predictor of a faster ALSFRS-R and FVC decline. Additionally, a larger erythrocyte surface area was an independent predictor of lower survival. These changes in morphological and biophysical membrane properties of ALS patients' erythrocytes, lead to increased cell stiffness and morphological variations. We speculate that these changes might precipitate motoneurons dysfunction and accelerate disease progression. Further studies should explore the molecular alterations related to these observations. Our findings may contribute to dissect the complex interplay between respiratory function, tissue hypoxia, progression rate, and survival in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Eritrocitos , Microscopía de Fuerza Atómica , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/sangre , Femenino , Persona de Mediana Edad , Masculino , Eritrocitos/metabolismo , Eritrocitos/patología , Anciano , Propiedades de Superficie , Membrana Eritrocítica/metabolismo , Adulto , Capacidad Vital , Progresión de la Enfermedad
2.
Commun Biol ; 6(1): 192, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36801914

RESUMEN

Erythrocytes are deformable cells that undergo progressive biophysical and biochemical changes affecting the normal blood flow. Fibrinogen, one of the most abundant plasma proteins, is a primary determinant for changes in haemorheological properties, and a major independent risk factor for cardiovascular diseases. In this study, the adhesion between human erythrocytes is measured by atomic force microscopy (AFM) and its effect observed by micropipette aspiration technique, in the absence and presence of fibrinogen. These experimental data are then used in the development of a mathematical model to examine the biomedical relevant interaction between two erythrocytes. Our designed mathematical model is able to explore the erythrocyte-erythrocyte adhesion forces and changes in erythrocyte morphology. AFM erythrocyte-erythrocyte adhesion data show that the work and detachment force necessary to overcome the adhesion between two erythrocytes increase in the presence of fibrinogen. The changes in erythrocyte morphology, the strong cell-cell adhesion and the slow separation of the two cells are successfully followed in the mathematical simulation. Erythrocyte-erythrocyte adhesion forces and energies are quantified and matched with experimental data. The changes observed on erythrocyte-erythrocyte interactions may give important insights about the pathophysiological relevance of fibrinogen and erythrocyte aggregation in hindering microcirculatory blood flow.


Asunto(s)
Eritrocitos , Adhesivo de Tejido de Fibrina , Humanos , Adhesivo de Tejido de Fibrina/metabolismo , Adhesivo de Tejido de Fibrina/farmacología , Microcirculación , Eritrocitos/metabolismo , Fibrinógeno/metabolismo , Modelos Teóricos
3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674863

RESUMEN

Malaria remains a major world public health problem, contributing to poverty and inequality. It is urgent to find new efficacious tools with few adverse effects. Malaria has selected red blood cell (RBC) alterations linked to resistance against infection, and understanding the protective mechanisms involved may be useful for developing host-directed tools to control Plasmodium infection. Pyruvate kinase deficiency has been associated with resistance to malaria. Pyruvate kinase-deficient RBCs display an increased concentration of 2,3-diphosphoglycerate (2,3-DPG). We recently showed that 2,3-DPG impacts in vitro intraerythrocytic parasite growth, induces a shift of the metabolic profile of infected cells (iRBCs), making it closer to that of noninfected ones (niRBCs), and decreases the number of parasite progenies that invade new RBCs. As an increase of 2,3-DPG content may also have an adverse effect on RBC membrane and, consequently, on the parasite invasion, in this study, we explored modifications of the RBC morphology, biomechanical properties, and RBC membrane on Plasmodium falciparum in vitro cultures treated with 2,3-DPG, using atomic force microscopy (AFM)-based force spectroscopy and other experimental approaches. The presence of infection by P. falciparum significantly increased the rigidity of parasitized cells and influenced the morphology of RBCs, as parasitized cells showed a decrease of the area-to-volume ratio. The extracellular addition of 2,3-DPG also slightly affected the stiffness of niRBCs, making it more similar to that of infected cells. It also changed the niRBC height, making the cells appear more elongated. Moreover, 2,3-DPG treatment influenced the cell surface charge, becoming more negative in treated RBCs than in untreated ones. The results indicate that treatment with 2,3-DPG has only a mild effect on RBCs in comparison with the effect of the presence of the parasite on the host cell. 2,3-DPG is an endogenous host metabolite, which may, in the future, originate a new antimalarial tool with few adverse effects on noninfected cells.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , 2,3-Difosfoglicerato/metabolismo , Piruvato Quinasa/metabolismo , Eritrocitos/metabolismo , Malaria/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum , Ácidos Difosfoglicéricos/metabolismo
4.
Pharmaceutics ; 14(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36145584

RESUMEN

Silicone-based medical devices composed of polydimethylsiloxane (PDMS) are widely used all over the human body (e.g., urinary stents and catheters, central venous catheters stents) with extreme clinical success. Nevertheless, their abiotic surfaces, being prone to microorganism colonization, are often involved in infection occurrence. Improving PDMS antimicrobial properties by surface functionalization with biosurfactants to prevent related infections has been the goal of different works, but studies that mimic the clinical use of these novel surfaces are missing. This work aims at the biofunctional assessment of PDMS functionalized with rhamnolipids (RLs), using translational tests that more closely mimic the clinical microenvironment. Rhamnolipids were covalently bonded to PDMS, and the obtained surfaces were characterized by contact angle modification assessment, ATR-FTIR analysis and atomic force microscopy imaging. Moreover, a parallel flow chamber was used to assess the Staphylococcus aureus antibiofilm activity of the obtained surfaces under dynamic conditions, and an in vitro characterization with human dermal fibroblast cells in both direct and indirect characterization assays, along with an in vivo subcutaneous implantation assay in the translational rabbit model, was performed. A 1.2 log reduction in S. aureus biofilm was observed after 24 h under flow dynamic conditions. Additionally, functionalized PDMS lessened cell adhesion upon direct contact, while supporting a cytocompatible profile, within an indirect assay. The adequacy of the biological response was further validated upon in vivo subcutaneous tissue implantation. An important step was taken towards biofunctional assessment of RLs-functionalized PDMS, reinforcing their suitability for medical device usage and infection prevention.

5.
Biomater Adv ; 134: 112563, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35525746

RESUMEN

Controlling bacterial biofilm formation on silicone-based bloodstream catheters is of great concern to prevent related-infections. In this study, rhamnolipids (RLs), glycolipid biosurfactants, specifically a RLs mixture and the purified di-RL (RhaRhaC10:0C10:0) were covalently bonded to silicone with the intention of reaching long-lasting antibiofilm surfaces. RLs mixture and di-RL were identified by an UHPLC-MS method that also allowed the confirmation of compound isolation by automated flash chromatography. Silicone surfaces underwent air-plasma treatment, inducing reactive oxygen radicals able to promote the RLs grafting that was confirmed by contact angle, FTIR-ATR and AFM measurements. The antibiofilm activity towards different Gram positive strains was evaluated by colony forming units (CFU) count and confocal laser microscopy. In addition, protein adsorption and biocompatibility were also investigated. RLs were successfully grafted onto silicone and RLs mixture and RhaRhaC10C10:0 functionalized specimens reduced the biofilm formation over 2.3 log units against methicillin sensitive Staphylococcus aureus. Additionally, a decrease of 1 log unit was observed against methicillin resistant S. aureus and S. epidermidis. Functionalized samples showed cytocompatibility towards human dermal fibroblasts, hemocompatibility and no vascular irritation potential. The results mentioned above revealed a synergy between the antimicrobial and the anti-adhesive properties of RLs, making these compounds good candidates for the improvement of the medical devices antibiofilm properties.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Biopelículas , Catéteres/microbiología , Dimetilpolisiloxanos , Glucolípidos/farmacología , Humanos , Staphylococcus epidermidis
6.
Cells ; 11(8)2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35455986

RESUMEN

BACKGROUND: Aquaporins are membrane channels responsible for the bidirectional transfer of water and small non-charged solutes across cell membranes. AQP3 and AQP5 are overexpressed in pancreatic ductal adenocarcinoma, playing key roles in cell migration, proliferation, and invasion. Here, we evaluated AQP3 and AQP5 involvement in cell biomechanical properties, cell-cell adhesion, and cell migration, following a loss-of-function strategy on BxPC-3 cells. RESULTS: Silencing of AQP3 and AQP5 was functionally validated by reduced membrane permeability and had implications on cell migration, slowing wound recovery. Moreover, silenced AQP5 and AQP3/5 cells showed higher membrane fluidity. Biomechanical and morphological changes were assessed by atomic force microscopy (AFM), revealing AQP5 and AQP3/5 silenced cells with a lower stiffness than their control. Through cell-cell adhesion measurements, the work (energy) necessary to detach two cells was found to be lower for AQP-silenced cells than control, showing that these AQPs have implications on cell-cell adhesion. CONCLUSION: These findings highlight AQP3 and AQP5 involvement in the biophysical properties of cell membranes, whole cell biomechanical properties, and cell-cell adhesion, thus having potential implication in the settings of tumor development.


Asunto(s)
Acuaporina 3 , Acuaporina 5 , Neoplasias Pancreáticas , Acuaporina 3/genética , Acuaporina 3/metabolismo , Acuaporina 5/genética , Acuaporina 5/metabolismo , Adhesión Celular , Movimiento Celular , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
7.
Front Cell Infect Microbiol ; 12: 840968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372095

RESUMEN

Mechanisms of malaria parasite interaction with its host red blood cell may provide potential targets for new antimalarial approaches. Pyruvate kinase deficiency has been associated with resistance to malaria in both experimental models and population studies. Two of the major pyruvate kinase deficient-cell disorders are the decrease in ATP and the increase in 2,3-biphosphoglycerate (2,3-BPG) concentration. High levels of this metabolite, only present in mammalian red blood cell, has an inhibitory effect on glycolysis and we hypothesized that its accumulation may also be harmful to the parasite and be involved in the mechanism of protection provided by that enzymopathy. We examined the effect of a synthetic form, 2,3-DPG, on the Plasmodium falciparum intraerythrocytic developmental cycle in vitro. Results showed an impairment of parasite growth with a direct effect on parasite maturation as significant lower progeny emerged from parasites that were submitted to 2,3-DPG. Further, adding the compound to the culture medium did not result in any effect on the host cell, but instead the metabolic profile of an infected cell became closer to that of a non-infected cell.


Asunto(s)
Malaria , Plasmodium falciparum , 2,3-Difosfoglicerato/metabolismo , Animales , Eritrocitos/parasitología , Glucólisis , Malaria/metabolismo , Mamíferos
8.
Annu Rev Biophys ; 51: 201-221, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34990221

RESUMEN

Mechanical properties have been extensively studied in pure elastic or viscous materials; however, most biomaterials possess both physical properties in a viscoelastic component. How the biomechanics of a fibrin clot is related to its composition and the microenvironment where it is formed is not yet fully understood. This review gives an outline of the building mechanisms for blood clot mechanical properties and how they relate to clot function. The formation of a blood clot in health conditions or the formation of a dangerous thrombus go beyond the mere polymerization of fibrinogen into a fibrin network. The complex composition and localization of in vivo fibrin clots demonstrate the interplay between fibrin and/or fibrinogen and blood cells. The study of these protein-cell interactions and clot mechanical properties may represent new methods for the evaluation of cardiovascular diseases (the leading cause of death worldwide), creating new possibilities for clinical diagnosis, prognosis, and therapy.


Asunto(s)
Trombosis , Fibrina , Fibrinógeno , Humanos
9.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528688

RESUMEN

In atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial. We identify cholesteryl hemiazelate (ChA), a stable oxidation end-product of cholesteryl-polyunsaturated fatty acid esters, as an inducer of lysosome malfunction in VSMCs. ChA-treated VSMCs acquire a foam-cell-like phenotype, characterized by enlarged lysosomes full of ChA and neutral lipids. The lysosomes are perinuclear and exhibit degradative capacity and cargo exit defects. Lysosome luminal pH is also altered. Even though the transcriptional response machinery and autophagy are not activated by ChA, the addition of recombinant lysosomal acid lipase (LAL) is able to rescue lysosome dysfunction. ChA significantly affects VSMC proliferation and migration, impacting atherosclerosis. In summary, this work shows that ChA is sufficient to induce lysosomal dysfunction in VSMCs, that, in ChA-treated VSMCs, neither lysosome biogenesis nor autophagy are triggered, and, finally, that recombinant LAL can be a therapeutic approach for lysosomal dysfunction.


Asunto(s)
Músculo Liso Vascular , Miocitos del Músculo Liso , Proliferación Celular , Células Cultivadas , Células Espumosas , Homeostasis , Lisosomas
11.
Front Cardiovasc Med ; 8: 715842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568457

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder related to neuroinflammation that is associated with increased risk of thrombosis. We aimed to evaluate γ' fibrinogen plasma level (an in vivo variant of fibrinogen) as a biomarker in ALS, and to test its role as a predictor of disease progression and survival. Sixty-seven consecutive patients with ALS were followed and the results were compared with those from 82 healthy blood donors. Patients were clinically evaluated at the time of blood sampling and on follow-up (every 3 months for the beginning of the follow-up until death) by applying the revised ALS Functional Rating Scale. Human plasma γ' fibrinogen concentration was quantified using a specific two-site sandwich kit enzyme-linked immunosorbent assay. We found, for the first time, a positive association between γ' fibrinogen concentration and survival in ALS patients: patients with higher γ' fibrinogen plasma levels survived longer, and this finding was not influenced by confounders such as age, gender, respiratory impairment, or functionality (ALSFRS-R score). Since increased levels have a positive impact on outcome, this novel biomarker should be further investigated in ALS.

12.
Colloids Surf B Biointerfaces ; 208: 112057, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34464911

RESUMEN

Staphylococcus aureus medical devices related-infections, such as blood stream catheter are of major concern. Their prevention is compulsory and strategies, not prone to the development of resistance, to prevent S. aureus biofilms on catheter surfaces (e.g. silicone) are needed. In this work two different approaches using sophorolipids were studied to prevent S. aureus biofilm formation on medical grade silicone: i) an antiadhesive strategy through covalent bond of sophorolipids to the surface; ii) and a release strategy using isolated most active sophorolipids. Sophorolipids produced by Starmerella bombicola, were characterized by UHPLC-MS and RMN, purified by automatic flash chromatography and tested for their antimicrobial activity towards S. aureus. Highest antimicrobial activity was observed for C18:0 and C18:1 diacetylated lactonic sophorolipids showing a MIC of 50 µg mL-1. Surface modification with acidic or lactonic sophorolipids when evaluating the anti-adhesive or release strategy, respectively, was confirmed by contact angle, FTIR-ATR and AFM analysis. When using a mixture of acidic sophorolipids covalently bonded to silicone surface as antiadhesive strategy cytocompatible surfaces were obtained and a reduction of 90 % on biofilm formation was observed. Nevertheless, if a release strategy is adopted with purified lactonic sophorolipids a higher effect is achieved. Most promising compound was C18:1 diacateylated lactonic sophorolipid that showed no cellular viability reduction when a concentration of 1.5 mg mL-1 was selected and a reduction on biofilm around 5 log units. Results reinforce the applicability of these antimicrobial biosurfactants on preventing biofilms and disclose that their antimicrobial effect is imperative when comparing to their antiadhesive properties.


Asunto(s)
Infecciones Relacionadas con Catéteres , Staphylococcus aureus Resistente a Meticilina , Infecciones Relacionadas con Catéteres/prevención & control , Glucolípidos/farmacología , Humanos , Ácidos Oléicos , Saccharomycetales , Staphylococcus aureus
13.
Pharmaceutics ; 13(3)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802592

RESUMEN

Innovative formulations, including solid lipid nanoparticles (SLNs), have been sought to improve skin permeation of non-steroidal anti-inflammatory drugs (NSAIDs). The present study explores the use of SLNs, prepared using a fusion-emulsification method, to increase skin permeation and in vivo activity of two relevant NSAIDs: A liquid molecule (etofenamate) and a solid one (ibuprofen), formulated in a 2% hydroxypropyl methylcellulose gel through the gelation of SLN suspensions. Compritol® 888 ATO and Tween® 80 were used as a solid lipid and a surfactant, respectively. All production steps were up scalable, resulting in SLNs with high encapsulation efficiency (>90%), a mean particle size of <250 nm, a polydispersity index <0.2, and that were stable for 12 months. In vitro permeation, using human skin in Franz diffusion cells, showed increased permeation and similar cell viability in Df and HaCaT cell lines for SLN formulations when compared to commercial formulations of etofenamate (Reumon® Gel 5%) and ibuprofen (Ozonol® 5%). In vivo activity in the rat paw edema inflammation model showed that SLN hydrogels containing lower doses of etofenamate (8.3 times lower) and ibuprofen (16.6 times lower) produced similar effects compared to the commercial formulations, while decreasing edema and inflammatory cell infiltration, and causing no histological changes in the epidermis. These studies demonstrate that encapsulation in SLNs associated to a suitable hydrogel is a promising technological approach to NSAIDs dermal application.

14.
Biomedicines ; 10(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35052737

RESUMEN

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease often associated with severe complications that may result in patient morbidity or death. One T2DM etiological agent is chronic hyperglycemia, a condition that induces damaging biological processes, including impactful extracellular matrix (ECM) modifications, such as matrix components accumulation. The latter alters ECM stiffness, triggering fibrosis, inflammation, and pathological angiogenesis. Hence, studying ECM biochemistry and biomechanics in the context of T2DM, or obesity, is highly relevant. With this in mind, we examined both native and decellularized tissues of obese B6.Cg-Lepob/J (ob/ob) and diabetic BKS.Cg-Dock7m+/+LeprdbJ (db/db) mice models, and extensively investigated their histological and biomechanical properties. The tissues analyzed herein were those strongly affected by diabetes-skin, kidney, adipose tissue, liver, and heart. The referred organs and tissues were collected from 8-week-old animals and submitted to classical histological staining, immunofluorescence, scanning electron microscopy, rheology, and atomic force microscopy. Altogether, this systematic characterization has identified significant differences in the architecture of both ob/ob and db/db tissues, namely db/db skin presents loose epidermis and altered dermis structure, the kidneys have clear glomerulopathy traits, and the liver exhibits severe steatosis. The distribution of ECM proteins also pinpoints important differences, such as laminin accumulation in db/db kidneys and decreased hyaluronic acid in hepatocyte cytoplasm in both obese and diabetic mice. In addition, we gathered a significant set of data showing that ECM features are maintained after decellularization, making these matrices excellent biomimetic scaffolds for 3D in vitro approaches. Importantly, mechanical studies revealed striking differences between tissue ECM stiffness of control (C57BL/6J), obese, and diabetic mice. Notably, we have unveiled that the intraperitoneal adipose tissue of diabetic animals is significantly stiffer (G* ≈ 10,000 Pa) than that of ob/ob or C57BL/6J mice (G* ≈ 3000-5000 Pa). Importantly, this study demonstrates that diabetes and obesity selectively potentiate severe histological and biomechanical alterations in different matrices that may impact vital processes, such as angiogenesis, wound healing, and inflammation.

15.
Elife ; 82019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31246175

RESUMEN

Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.


Asunto(s)
Movimiento Celular , Células Endoteliales/fisiología , Neovascularización Fisiológica , Vía de Señalización Wnt , Proteína Wnt-5a/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Ratones , Unión Proteica , Vinculina/metabolismo , alfa Catenina/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-30788291

RESUMEN

West Nile and dengue viruses are closely related flaviviruses, originating mosquito-borne viral infections for which there are no effective and specific treatments. Their capsid proteins sequence and structure are particularly similar, forming highly superimposable α-helical homodimers. Measuring protein-ligand interactions at the single-molecule level yields detailed information of biological and biomedical relevance. In this work, such an approach was successfully applied on the characterization of the West Nile virus capsid protein interaction with host lipid systems, namely intracellular lipid droplets (an essential step for dengue virus replication) and blood plasma lipoproteins. Dynamic light scattering measurements show that West Nile virus capsid protein binds very low-density lipoproteins, but not low-density lipoproteins, and this interaction is dependent of potassium ions. Zeta potential experiments show that the interaction with lipid droplets is also dependent of potassium ions as well as surface proteins. The forces involved on the binding of the capsid protein with lipid droplets and lipoproteins were determined using atomic force microscopy-based force spectroscopy, proving that these interactions are K+-dependent rather than a general dependence of ionic strength. The capsid protein interaction with host lipid systems may be targeted in future therapeutic strategies against different flaviviruses. The biophysical and nanotechnology approaches employed in this study may be applied to characterize the interactions of other important proteins from different viruses, in order to understand their life cycles, as well as to find new strategies to inhibit them.


Asunto(s)
Proteínas de la Cápside/metabolismo , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Virus del Nilo Occidental/crecimiento & desarrollo , Animales , Línea Celular , Cricetinae , Humanos , Gotas Lipídicas/metabolismo , Lipoproteínas VLDL/metabolismo , Unión Proteica
17.
Nanoscale ; 11(6): 2757-2766, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30672545

RESUMEN

Some studies have reported a positive association between plasma fibrinogen levels, erythrocyte aggregation and essential arterial hypertension (EAH). The aim of this study was to understand how the interaction between fibrinogen and its erythrocyte membrane receptor is altered in EAH. EAH patients (n = 31) and healthy blood donors (n = 65) were enrolled in the study. EAH patients were therapeutically controlled for the disease, presenting a systolic blood pressure between 108 and 180 mmHg and a diastolic blood pressure between 66 and 123 mmHg. Clinical evaluation included blood pressure monitoring, electrocardiography, echocardiography and blood cell count. The hemorheological parameters were also analyzed. Fibrinogen-erythrocyte binding force and frequency were evaluated quantitatively, at the single-molecule level, using atomic force microscopy (AFM). Changes in erythrocyte elasticity were also evaluated. Force spectroscopy data showed that the average fibrinogen-erythrocyte binding forces increase from 40.4 ± 3.0 pN in healthy donors to 73.8 ± 8.1 pN in patients with EAH, despite a lower binding frequency for patients compared to the control group (7.9 ± 1.6% vs. 27.6 ± 4.2%, respectively). Elasticity studies revealed an increase of erythrocyte stiffness in the patients. The stronger fibrinogen binding to erythrocytes from EAH patients and alteration in cell elasticity may lead to changes in the whole blood flow. The patients' altered hemorheological parameters may also contribute to these blood flow perturbations. The transient bridging of two erythrocytes, by the simultaneous binding of fibrinogen to both of them, promoting erythrocyte aggregation, could represent an important cardiovascular risk factor.


Asunto(s)
Eritrocitos/metabolismo , Hipertensión Esencial/sangre , Hipertensión Esencial/epidemiología , Fibrinógeno/metabolismo , Anciano , Presión Sanguínea/fisiología , Estudios de Casos y Controles , Técnicas de Diagnóstico Cardiovascular , Agregación Eritrocitaria/fisiología , Membrana Eritrocítica/fisiología , Hipertensión Esencial/fisiopatología , Femenino , Humanos , Masculino , Microscopía de Fuerza Atómica , Persona de Mediana Edad
18.
Cell Commun Signal ; 16(1): 75, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404626

RESUMEN

BACKGROUND: Basal-like breast cancer (BLBC) is a poor prognosis subgroup of triple-negative carcinomas that still lack specific target therapies and accurate biomarkers for treatment selection. P-cadherin is frequently overexpressed in these tumors, promoting cell invasion, stem cell activity and tumorigenesis by the activation of Src-Family kinase (SRC) signaling. Therefore, our aim was to evaluate if the treatment of BLBC cells with dasatinib, the FDA approved SRC inhibitor, would impact on P-cadherin induced tumor aggressive behavior. METHODS: P-cadherin and SRC expression was evaluated in a series of invasive Breast Cancer and contingency tables and chi-square tests were performed. Cell-cell adhesion measurements were performed by Atomic Force Microscopy, where frequency histograms and Gaussian curves were applied. 2D and 3D cell migration and invasion, proteases secretion and self-renew potential were evaluated in vitro. Student's t-tests were used to determine statistically significant differences. The cadherin/catenin complex interactions were evaluated by in situ proximity-ligation assay, and statistically significant results were determined by using Mann-Whitney test with a Bonferroni correction. In vivo xenograft mouse models were used to evaluate the impact of dasatinib on tumor growth and survival. ANOVA test was used to evaluate the differences in tumor size, considering a confidence interval of 95%. Survival curves were estimated by the Kaplan-Meier's method, using the log-rank test to assess significant differences for mice overall survival. RESULTS: Our data demonstrated that P-cadherin overexpression is significantly associated with SRC activation in breast cancer cells, which was also validated in a large series of primary tumor samples. SRC activity suppression with dasatinib significantly prevented the in vitro functional effects of P-cadherin overexpressing cells, as well as their in vivo tumorigenic and metastatic ability, by increasing mice overall survival. Mechanistically, SRC inhibition affects P-cadherin downstream signaling, rescues the E-cadherin/p120-catenin complex to the cell membrane, recovering cell-cell adhesion function. CONCLUSIONS: In conclusion our findings show that targeting P-cadherin/SRC signaling and functional activity may open novel therapeutic opportunities for highly aggressive and poor prognostic basal-like breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Cadherinas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Animales , Carcinogénesis/efectos de los fármacos , Cateninas/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Dasatinib/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Metástasis de la Neoplasia , Catenina delta
19.
Nanomedicine (Lond) ; 13(19): 2491-2505, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30311540

RESUMEN

AIM: γ' fibrinogen has been associated with thrombosis. Here the interactions between γ'γ' or γAγA fibrinogen and red blood cells (RBCs), and their role on fibrin clot properties were studied. MATERIALS & METHODS: Atomic Force microscopy (AFM)-based force spectroscopy, rheological, electron and confocal microscopy, and computational approaches were conducted for both fibrinogen variants. RESULTS & CONCLUSION: AFM shows that the recombinant human (rh)γ'γ' fibrinogen increases the binding force and the frequency of the binding to RBCs compared with rhγAγA, promoting cell aggregation. Structural changes in rhγ'γ' fibrin clots, displaying a nonuniform fibrin network were shown by microscopy approaches. The presence of RBCs decreases the fibrinolysis rate and increases viscosity of rhγ'γ' fibrin clots. The full length of the γ' chain structure, revealed by computational analysis, occupies a much wider surface and is more flexible, allowing an increase of the binding between γ' fibers, and eventually with RBCs.


Asunto(s)
Fibrina/metabolismo , Fibrinógenos Anormales/administración & dosificación , Tromboembolia/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Coagulación Sanguínea/efectos de los fármacos , Agregación Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Fibrina/ultraestructura , Fibrinógenos Anormales/química , Fibrinógenos Anormales/genética , Fibrinólisis/efectos de los fármacos , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Conformación Proteica , Reología , Tromboembolia/patología , Trombosis/sangre , Trombosis/patología , Viscosidad
20.
Int J Nanomedicine ; 13: 1985-1992, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662311

RESUMEN

BACKGROUND: Erythrocyte aggregation, a cardiovascular risk factor, is increased by high plasma fibrinogen levels. Here, the effect of different fibrinogen mutations on binding to its human erythrocyte receptor was assessed in order to identify the interaction sites. METHODS: Three fibrinogen variants were tested, specifically mutated in their putative integrin recognition sites on the Aα chain (mutants D97E, D574E and D97E/D574E) and compared with wild-type fibrinogen. RESULTS: Atomic force microscopy-based force spectroscopy measurements showed a significant decrease both on the fibrinogen-erythrocyte binding force and on its frequency for fibrinogen with the D97E mutation, indicating that the corresponding arginine-glycine-aspartate sequence (residues 95-97) is involved in this interaction, and supporting that the fibrinogen receptor on erythrocytes has a ß3 subunit. Changes in the fibrin clot network structure obtained with the D97E mutant were observed by scanning electron microscopy. CONCLUSION: These findings may lead to innovative perspectives on the development of new therapeutic approaches to overcome the risks of fibrinogen-driven erythrocyte hyperaggregation.


Asunto(s)
Eritrocitos/metabolismo , Fibrinógeno/metabolismo , Receptores Fibrinógenos/metabolismo , Sitios de Unión , Fibrina/metabolismo , Fibrinógeno/genética , Humanos , Integrinas/metabolismo , Microscopía de Fuerza Atómica , Mutación , Unión Proteica , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...