Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glia ; 57(15): 1579-87, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19373939

RESUMEN

The process of oligodendrocyte differentiation is regulated by a dynamic interaction between a genetic and an epigenetic program. Recent studies, addressing nucleosomal histone modifications have considerably increased our knowledge regarding epigenetic regulation of gene expression during oligodendrocyte development and aging. These results have generated new hypotheses regarding the mechanisms underlying the decreased efficiency of endogenous remyelination in response to demyelinating injuries with increasing age. In this review, we present an overview of the epigenetic mechanisms regulating gene expression at specific stages of oligodendrocyte differentiation and maturation as well as the changes that occur with aging.


Asunto(s)
Envejecimiento/fisiología , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Oligodendroglía/fisiología , Diferenciación Celular/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Biológicos , Oligodendroglía/enzimología , Oligodendroglía/ultraestructura , Regeneración/fisiología
2.
J Neurosci Res ; 87(15): 3297-305, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19025772

RESUMEN

Previous studies have suggested the existence of a gender bias in repair after demyelination. Here we report the existence of gender dimorphism for the regulation of cell number in the subventricular zone (SVZ), an area that has been studied for its repair potential. The number of Sox2(+) multipotential cells in the SVZ of young adult female mice was greater than in age-matched male siblings, but this difference was not evident prior to the surge of sex hormones (i.e., in prepubertal mice). To begin asking whether hormonally derived signals were responsible for these gender-related differences, we analyzed proliferation and survival of cultured male- and female-derived SVZ cells. Estrogen, but not testosterone treatment increased cell proliferation and survival of cultured cells after IFN-gamma treatment or after UV irradiation, regardless of the gender of origin. Because apoptosis in UV-irradiated SVZ cells correlated with the expression of the proapoptotic molecule p53, we postulated that this molecule could be responsible for the gender dimorphism in the SVZ. In agreement with this prediction, no difference in the SVZ cell number was detected in male and female p53 null mice. Together with previous reports, these results implicate p53 as an important component of the mechanism regulating gender dimorphism in the SVZ.


Asunto(s)
Hormonas Esteroides Gonadales/metabolismo , Neurogénesis/fisiología , Caracteres Sexuales , Células Madre/metabolismo , Telencéfalo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Recuento de Células , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Hormonas Esteroides Gonadales/farmacología , Interferón gamma/metabolismo , Interferón gamma/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/efectos de los fármacos , Neurogénesis/efectos de la radiación , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de la radiación , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares , Células Madre/citología , Telencéfalo/citología , Proteína p53 Supresora de Tumor/genética , Rayos Ultravioleta
3.
Prog Neurobiol ; 86(4): 368-78, 2008 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18930111

RESUMEN

The evidence suggesting a role of epigenetics in the definition of complex trait diseases is rapidly increasing. The gender prevalence of multiple sclerosis, the low level concordance in homozygous twins and the linkage to several genetic loci, suggest an epigenetic component to the definition of this demyelinating disorder. While the immune etio-pathogenetic mechanism of disease progression has been well characterized, still relatively little is known about the initial events contributing to onset and progression of the demyelinating lesion. This article addresses the challenging question of whether loss of the mechanisms of epigenetic regulation of gene expression in the myelinating cells may contribute to the pathogenesis of multiple sclerosis, by affecting the repair process and by modulating the levels of enzymes involved in neo-epitope formation. The role of altered post-translational modifications of nucleosomal histones and DNA methylation in white matter oligodendroglial cells are presented in terms of pathogenetic concepts and the relevance to therapeutic intervention is then discussed.


Asunto(s)
Encéfalo/metabolismo , Epigénesis Genética/fisiología , Estudios de Evaluación como Asunto , Esclerosis Múltiple/patología , Animales , Encéfalo/patología , Humanos
4.
J Neurosci ; 28(24): 6118-27, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18550754

RESUMEN

Oligodendrogliopathy, microglial infiltration, and lack of remyelination are detected in the brains of patients with multiple sclerosis and are accompanied by high levels of the transcription factor p53. In this study, we used the cuprizone model of demyelination, characterized by oligodendrogliopathy and microglial infiltration, to define the effect of p53 inhibition. Myelin preservation, decreased microglial recruitment, and gene expression were observed in mice lacking p53 or receiving systemic administration of the p53 inhibitor pifithrin-alpha, compared with untreated controls. Decreased levels of lypopolysaccharide-induced gene expression were also observed in vitro, in p53(-/-) primary microglial cultures or in pifithrin-alpha-treated microglial BV2 cells. An additional beneficial effect of lack or inhibition of p53 was observed in Sox2+ multipotential progenitors of the subventricular zone that responded with increased proliferation and oligodendrogliogenesis. Based on these results, we propose transient inhibition of p53 as a potential therapeutic target for demyelinating conditions primarily characterized by oligodendrogliopathy.


Asunto(s)
Enfermedades Desmielinizantes/patología , Oligodendroglía/patología , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Benzotiazoles/farmacología , Células Cultivadas , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Oligodendroglía/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Tolueno/análogos & derivados , Tolueno/farmacología , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia
5.
J Neurochem ; 106(4): 1493-502, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18485096

RESUMEN

The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However, its role varies in diverse cell types and includes proliferation, differentiation, and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination, and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed.


Asunto(s)
Vaina de Mielina/fisiología , Enfermedades del Sistema Nervioso/metabolismo , Sistema Nervioso/metabolismo , Neuronas/fisiología , Factor de Transcripción YY1/fisiología , Animales , Humanos , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Sistema Nervioso/química , Sistema Nervioso/embriología , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción YY1/química
6.
Nat Neurosci ; 11(9): 1024-34, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19160500

RESUMEN

The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for this decline remain only partially understood. In this study, we show that remyelination is regulated by age-dependent epigenetic control of gene expression. In demyelinated young brains, new myelin synthesis is preceded by downregulation of oligodendrocyte differentiation inhibitors and neural stem cell markers, and this is associated with recruitment of histone deacetylases (HDACs) to promoter regions. In demyelinated old brains, HDAC recruitment is inefficient, and this allows the accumulation of transcriptional inhibitors and prevents the subsequent surge in myelin gene expression. Defective remyelination can be recapitulated in vivo in mice receiving systemic administration of pharmacological HDAC inhibitors during cuprizone treatment and is consistent with in vitro results showing defective differentiation of oligodendrocyte progenitors after silencing specific HDAC isoforms. Thus, we suggest that inefficient epigenetic modulation of the oligodendrocyte differentiation program contributes to the age-dependent decline in remyelination efficiency.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/fisiopatología , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Proteínas de la Mielina/metabolismo , Regeneración/fisiología , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Epigénesis Genética/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Proteínas de la Mielina/genética , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/patología , Ratas , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Ácido Valproico/farmacología
7.
Neurobiol Aging ; 29(3): 452-63, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17182153

RESUMEN

In this study, we address the hypothesis that aging modifies the intrinsic properties of oligodendrocytes, the myelin-forming cells of the brain. According to our model, an "epigenetic memory" is stored in the chromatin of the oligodendrocyte lineage cells and is responsible for the maintenance of a mature phenotype, characterized by low levels of expression of transcriptional inhibitors. We report here an age-related decline of histone deacetylation and methylation, the molecular mechanisms responsible for the establishment and maintenance of this "epigenetic memory" of the differentiated state. We further show that lack of histone methylation and increased acetylation in mature oligodendrocytes are associated with global changes in gene expression, that include the re-expression of bHLH inhibitors (i.e. Hes5 and Id4) and precursor markers (i.e. Sox2). These changes characteristic of the "aging" oligodendrocytes can be recapitulated in vitro, by treating primary oligodendrocyte cultures with histone deacetylase inhibitors. Thus, we conclude that the "epigenetic memory loss" detected in white matter tracts of older mice induces global changes of gene expression that modify the intrinsic properties of aged oligodendrocytes and may functionally modulate the responsiveness of these cells to external stimuli.


Asunto(s)
Envejecimiento/fisiología , Cuerpo Calloso/citología , Regulación de la Expresión Génica/fisiología , Oligodendroglía/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Proteínas Relacionadas con la Autofagia , Células Cultivadas , Corteza Cerebral/citología , Proteínas de Unión al ADN/metabolismo , Femenino , Histona Desacetilasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Factores de Transcripción SOXB1 , Células Madre/efectos de los fármacos , Células Madre/fisiología , Transactivadores/metabolismo
8.
J Mol Neurosci ; 35(1): 13-22, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17999198

RESUMEN

The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed.


Asunto(s)
Epigénesis Genética , Histonas/metabolismo , Nucleosomas/metabolismo , Oligodendroglía/fisiología , Procesamiento Proteico-Postraduccional , Animales , Arginina/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula , Cuerpo Calloso/fisiología , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/química , Histonas/genética , Lisina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Nucleosomas/química , Oligodendroglía/citología
9.
Neuron ; 55(2): 217-30, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17640524

RESUMEN

The progression of progenitors to oligodendrocytes requires proliferative arrest and the activation of a transcriptional program of differentiation. While regulation of cell cycle exit has been extensively characterized, the molecular mechanisms responsible for the initiation of differentiation remain ill-defined. Here, we identify the transcription factor Yin Yang 1 (YY1) as a critical regulator of oligodendrocyte progenitor differentiation. Conditional ablation of yy1 in the oligodendrocyte lineage in vivo induces a phenotype characterized by defective myelination, ataxia, and tremor. At the cellular level, lack of yy1 arrests differentiation of oligodendrocyte progenitors after they exit from the cell cycle. At the molecular level, YY1 acts as a lineage-specific repressor of transcriptional inhibitors of myelin gene expression (Tcf4 and Id4), by recruiting histone deacetylase-1 to their promoters during oligodendrocyte differentiation. Thus, we identify YY1 as an essential component of the transcriptional network regulating the transition of oligodendrocyte progenitors from cell cycle exit to differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Oligodendroglía/metabolismo , Células Madre/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Linaje de la Célula/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Oligodendroglía/citología , Células Madre/citología , Transcripción Genética/fisiología
10.
J Neurosci ; 27(29): 7717-30, 2007 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-17634366

RESUMEN

Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genuine model for spastic paraplegia (SPG-2). Their axons are well myelinated but exhibit impaired axonal transport and progressive degeneration, which is difficult to attribute to the absence of a single myelin protein. We hypothesized that secondary molecular changes in PLP(null) myelin contribute to the loss of PLP/DM20-dependent neuroprotection and provide more insight into glia-axonal interactions in this disease model. By gel-based proteome analysis, we identified >160 proteins in purified myelin membranes, which allowed us to systematically monitor the CNS myelin proteome of adult PLP(null) mice, before the onset of disease. We identified three proteins of the septin family to be reduced in abundance, but the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 2 (SIRT2) was virtually absent. SIRT2 is expressed throughout the oligodendrocyte lineage, and immunoelectron microscopy revealed its association with myelin. Loss of SIRT2 in PLP(null) was posttranscriptional, suggesting that PLP/DM20 is required for its transport into the myelin compartment. Because normal SIRT2 activity is controlled by the NAD+/NADH ratio, its function may be coupled to the axo-glial metabolism and the long-term support of axons by oligodendrocytes.


Asunto(s)
Sistema Nervioso Central/citología , Proteína Proteolipídica de la Mielina/fisiología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/fisiología , Sirtuinas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Células Cultivadas , Electroforesis en Gel Bidimensional/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica/métodos , Proteína Proteolipídica de la Mielina/deficiencia , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/deficiencia , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sirtuina 2
11.
J Neurosci ; 27(27): 7339-43, 2007 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-17611286

RESUMEN

The identity of any cell type is determined by the specific pattern of gene expression. We show here that the ability of oligodendrocyte progenitors to acquire the identity of myelin-expressing cells or choose alternative fates is dependent on the activity of histone deacetylases. Using gene expression profiling, electrophysiological recordings, transplantation studies, and pharmacological inhibition, we demonstrate that specified NG2+ oligodendrocyte progenitors are plastic cells, whose decision to initiate an oligodendrocytic rather than astrocytic or neuronal program of gene expression requires the establishment of an epigenetic identity that is initiated by histone deacetylation.


Asunto(s)
Epigénesis Genética/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Oligodendroglía/fisiología , Células Madre/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Histonas/metabolismo , Memoria/fisiología , Neuroglía/citología , Neuroglía/enzimología , Neuroglía/trasplante , Neuronas/citología , Neuronas/enzimología , Neuronas/trasplante , Oligodendroglía/citología , Oligodendroglía/enzimología , Oligodendroglía/trasplante , Ratas , Células Madre/citología , Células Madre/enzimología
12.
Neuron Glia Biol ; 3(3): 221-31, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18634613

RESUMEN

The complexity of the adult brain is the result of an integrated series of developmental events that depends on appropriate timing of differentiation. The importance of transcriptional regulatory networks and epigenetic mechanisms of regulation of gene expression is becoming increasingly evident. Among these mechanisms, previous work has revealed the importance of histone deacetylation in oligodendrocyte differentiation. In this manuscript we define the region of interaction between transcription factor Yin-Yang 1 (YY1) and histone deacetylase 1, and characterize the functional consequences of YY1 overexpression on the differentiation of oligodendrocyte progenitors.

13.
J Neurosci ; 26(44): 11387-96, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079667

RESUMEN

Modification of arginine residues by citrullination is catalyzed by peptidylarginine deiminases (PADs), of which five are known, generating irreversible protein structural modifications. We have shown previously that enhanced citrullination of myelin basic protein contributed to destabilization of the myelin membrane in the CNS of multiple sclerosis (MS) patients. We now report increased citrullination of nucleosomal histones by PAD4 in normal-appearing white matter (NAWM) of MS patients and in animal models of demyelination. Histone citrullination was attributable to increased levels and activity of nuclear PAD4. PAD4 translocation into the nucleus was attributable to elevated tumor necrosis factor-alpha (TNF-alpha) protein. The elevated TNF-alpha in MS NAWM was not associated with CD3+ or CD8+ lymphocytes, nor was it associated with CD68+ microglia/macrophages. GFAP, a measure of astrocytosis, was the only cytological marker that was consistently elevated in the MS NAWM, suggesting that TNF-alpha may have been derived from astrocytes. In cell cultures of mouse and human oligodendroglial cell lines, PAD4 was predominantly cytosolic but TNF-alpha treatment induced its nuclear translocation. To address the involvement of TNF-alpha in targeting PAD4 to the nucleus, we found that transgenic mice overexpressing TNF-alpha also had increased levels of citrullinated histones and elevated nuclear PAD4 before demyelination. In conclusion, high citrullination of histones consequent to PAD4 nuclear translocation is part of the process that leads to irreversible changes in oligodendrocytes and may contribute to apoptosis of oligodendrocytes in MS.


Asunto(s)
Encéfalo/metabolismo , Citrulina/metabolismo , Modelos Animales de Enfermedad , Histonas/metabolismo , Hidrolasas/metabolismo , Esclerosis Múltiple/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Encéfalo/patología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Femenino , Histonas/genética , Humanos , Hidrolasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica
14.
EMBO J ; 25(20): 4833-42, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17006542

RESUMEN

This study identifies novel mechanisms of Hes5 function in developmental myelination. We report here upregulation of myelin gene expression in Hes5-/- mice compared to wild-type siblings and downregulation in overexpressing progenitors. This effect was only partially explained by the ability to regulate the levels of Mash1 and bind to N boxes in myelin promoters, as deletion of the DNA-binding domain of Hes5 did not suppress its inhibitory role on myelin gene expression. Novel mechanisms of Hes5 function in the oligodendrocyte lineage include the regulation of feedback loops with the cell-specific transcriptional activator Sox10. In progenitors with low levels of Sox10, Hes5 further decreases the bioavailability of this protein by transcriptional inhibition and direct sequestration of this activator. Increasing levels of Sox10 in progenitors, in turn, bind to Hes5 and titrate out its inhibitory effect by sequestration and displacement of the repressive complexes from myelin promoters. Thus, Hes5-dependent modulation of myelin gene expression involves old players (i.e. Mash1) and novel mechanisms of transcriptional regulation that include cell-specific regulatory loops with transcriptional activators (i.e. Sox10).


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteínas Represoras/metabolismo , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Oligodendroglía/citología , Especificidad de Órganos , Regiones Promotoras Genéticas/fisiología , Proteínas Represoras/genética , Factores de Transcripción SOXE , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Glia ; 54(4): 285-96, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16862533

RESUMEN

Myelination in the central nervous system is a complex process requiring the integration of oligodendrocyte progenitor differentiation and the coordinate expression of myelin genes. This study addresses the role of the helix-loop-helix protein Id4 in these two events. Overexpression of Id4 in oligodendrocyte progenitors prevents differentiation and consequently decreases the endogenous expression of all myelin genes. Conversely, progenitors lacking Id4 display precocious differentiation both in vitro and in vivo, and this phenotype is partially compensated by increased apoptosis. Besides this role, Id4 also has the ability to decrease the activity of specific myelin promoters, since Id4 overexpression decreases the activity of luciferase reporter genes driven by the ceramide galactosyltransferase (CGT) or myelin basic protein (MBP) promoter, but not by a myelin proteolipid protein (PLP) promoter. Consistent with these results, the expression levels of MBP and CGT are greater in neonatal Id4 null mice when compared with wild-type siblings and correlate with the early detection of MBP immunoreactive myelinated fibers. In contrast, the levels of other myelin proteins, such as PLP and myelin associated glycoprotein (MAG) are decreased in the Id4 null mice. MAG expression is localized to the soma rather than the fibers of immunoreactive cells in the neonatal brain and compensated at later developmental stages. These data support the role of Id4 as oligodendrocyte differentiation inhibitor with the ability to differentially regulate the expression and subcellular distribution of myelin gene products.


Asunto(s)
Proteínas Inhibidoras de la Diferenciación/fisiología , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Densitometría , Expresión Génica , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Luciferasas/genética , Ratones , Ratones Noqueados , Mitógenos/farmacología , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/fisiología , Oligodendroglía/fisiología , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/fisiología , Hormonas Tiroideas/farmacología , Transfección
16.
Mech Dev ; 123(1): 24-30, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16324829

RESUMEN

Histone deacetylases are critical components of transcriptional silencing mechanisms that regulate embryonic development. Recent work has shown that histone deacetylase 1 (hdac1) is required for neuronal specification during zebrafish CNS development. We show here that specification of oligodendrocytes, the myelinating cells of the CNS, also fails to occur in the hdac1 mutant hindbrain, but persistence of neural progenitors in the hindbrain ventricular zone, which express pax6a and sox2, is independent of hdac1 activity. Commitment of ventral neural progenitors to the oligodendrocyte fate is thought to require co-ordinate, hedgehog-dependent expression of olig2 and nkx2.2a in these cells, leading to expression of sox10 and subsequent differentiation of oligodendrocytes. Remarkably, transcription of olig2 is extinguished in ventral neural progenitors of the hdac1 mutant hindbrain, whereas expression of nkx2.2a is up-regulated in these cells, and sox10 expression is suppressed. Our results identify hdac1 as a novel, essential component of the mechanism that allocates neural progenitors to the oligodendrocyte fate, by attenuating expression of a subset of neural progenitor genes and rendering olig2 expression responsive to Hedgehog signalling.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/enzimología , Histona Desacetilasas/metabolismo , Oligodendroglía/enzimología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Sistema Nervioso Central/citología , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Hibridación in Situ , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/citología , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/enzimología , Células Madre/citología , Células Madre/enzimología , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
17.
J Neurosci ; 25(36): 8311-21, 2005 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16148239

RESUMEN

Recent studies suggest that specific neural basic helix-loop-helix (HLH; i.e., Olig1 and Olig2, Mash1), associated inhibitory HLH (i.e., Id2 and Id4), high-mobility group domain (i.e., Sox10), and homeodomain (i.e., Nkx2.2) transcription factors are involved in oligodendrocyte (OL) lineage specification and progressive stages of maturation including myelination. However, the developmental interplay among these lineage-selective determinants, in a cell- and maturational stage-specific context, has not yet been defined. We show here in vivo and in vitro developmental expression profiles for these distinct classes of transcriptional regulators of OLs. We show that progressive stages of OL lineage maturation are characterized by dynamic changes in the subcellular distribution of these transcription factors and by different permutations of combinatorial transcriptional codes. Transient transfections of these precise combinatorial codes with a luciferase reporter gene driven by the myelin basic protein promoter define how changes in the molecular composition of these transcriptional complexes modulate myelin gene expression. Our overall findings suggest that the dynamic interplay between developmental stage-specific classes of transcriptional activators and associated inhibitory factors orchestrate myelin gene expression during terminal maturation of the mammalian CNS.


Asunto(s)
Regulación de la Expresión Génica , Proteína Básica de Mielina/genética , Oligodendroglía/fisiología , Prosencéfalo/fisiología , Transactivadores/metabolismo , Transcripción Genética , Células 3T3 , Animales , Animales Recién Nacidos , Medios de Cultivo , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Proteína Homeobox Nkx-2.2 , Luciferasas/genética , Ratones , Neuroglía/fisiología , Neuronas/fisiología , Oligodendroglía/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología
18.
J Cell Biol ; 169(4): 577-89, 2005 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-15897262

RESUMEN

Timely differentiation of progenitor cells is critical for development. In this study we asked whether global epigenetic mechanisms regulate timing of progenitor cell differentiation into myelin-forming oligodendrocytes in vivo. Histone deacetylation was essential during a specific temporal window of development and was dependent on the enzymatic activity of histone deacetylases, whose expression was detected in the developing corpus callosum. During the first 10 postnatal days, administration of valproic acid (VPA), the specific inhibitor for histone deacetylase activity, resulted in significant hypomyelination with delayed expression of late differentiation markers and retained expression of progenitor markers. Differentiation resumed in VPA-injected rats if a recovery period was allowed. Administration of VPA after myelination onset had no effect on myelin gene expression and was consistent with changes of nucleosomal histones from reversible deacetylation to more stable methylation and chromatin compaction. Together, these data identify global modifications of nucleosomal histones critical for timing of oligodendrocyte differentiation and myelination in the developing corpus callosum.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Histonas/metabolismo , Oligodendroglía/metabolismo , Células Madre/metabolismo , Acetilación , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Encéfalo/citología , Diferenciación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Nucleosomas/efectos de los fármacos , Nucleosomas/genética , Nucleosomas/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Ratas , Células Madre/citología , Células Madre/efectos de los fármacos , Ácido Valproico/farmacología
19.
J Neurosci Res ; 80(3): 360-8, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15789403

RESUMEN

The mechanisms regulating the number of myelinating cells in the central nervous system are crucial for both normal development and repair in pathological conditions. Among relevant growth factors involved in this process, fibroblast growth factor-2 (FGF2) induces oligodendrocyte progenitors (OLPs) to proliferate and stimulates mature oligodendrocytes (OLs) to reenter the S-phase of the cell cycle. S-phase entry is modulated by the formation of complexes between cyclins and cyclin-dependent kinases (CDKs), on one hand, and by their interactions with cell cycle inhibitors (e.g., p18INK, p27Kip1, p21Cip1), on the other. Although the roles of cyclin E/CDK2 complexes and the inhibitor p27Kip1 have been extensively investigated relative to proliferation and differentiation in the OL lineage, less is known about the regulation of the formation of cyclin D1/CDK4 complexes and the role of p21Cip1 in these events. In this study, we show that the FGF2-mediated increase in bromodeoxyuridine (BrdU) incorporation into OL progenitors and mature OLs occurs concomitantly with increase in the levels of p21Cip1 and the formation of p21Cip1/cyclin D1/CDK4 ternary complexes. These complexes are functionally active is indicated by the ensuing FGF2-dependent hyperphosphorylation of the downstream target Rb. In untreated mature OLs that do not incorporate BrdU, the levels of p21Cip1 are low, and the level of the inhibitor p18INK is high. Furthermore, p18INK sequesters CDK2 into binary complexes, precluding the formation of p21Cip1/cyclin D1/CDK4 ternary complexes in these cells. Therefore, we propose that p21Cip1 is acting as a positive regulator, rather than an inhibitor, of cell cycle entry by favoring the assembly of active cyclin D1/CDK4 complexes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Oligodendroglía/metabolismo , Fase S/fisiología , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Ciclo Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Cultivadas , Sistema Nervioso Central/citología , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Sustancias Macromoleculares/metabolismo , Regeneración Nerviosa/fisiología , Oligodendroglía/citología , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Proteína de Retinoblastoma/metabolismo , Células Madre/citología , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/fisiología
20.
J Neurosci ; 25(3): 737-47, 2005 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-15659612

RESUMEN

Understanding the biological relevance of reexpression of developmental molecules in pathological conditions is crucial for the development of new therapies. In this study, we report the increased expression of stathmin, a developmentally regulated tubulin-binding protein, in the brains of patients with multiple sclerosis (MS). In physiological conditions, stathmin immunoreactivity was observed in polysialic acid-neural cell adhesion molecule-positive migratory progenitors in the subventricular zone, and its expression progressively decreased as the cells matured into oligodendrocytes (OLs). In MS patients, however, stathmin levels were elevated in 2',3'-cyclic nucleotide 3'-phosphodiesterase-positive OLs, in 10 of 10 bioptic samples analyzed. Increased levels of stathmin were confirmed by Western blot analysis of normal-appearing white matter samples from MS brains. In addition, using mass spectrometry, stathmin was identified as the main component of a specific myelin protein fraction consistently increased in MS preparations compared with controls. To test the biological relevance of increased stathmin levels, primary OL progenitors were transfected using a myc-tagged stathmin cDNA and were allowed to differentiate. Consistent with a distinct role played by this molecule in cells of the OL lineage at different developmental stages, transient transfection in progenitors favored the bipolar migratory phenotype but did not affect survival. However, sustained stathmin levels in differentiating OLs, because of overexpression, resulted in enhanced apoptotic susceptibility. We conclude that stathmin expression in demyelinating disorders could have a dual role. On one hand, by favoring the migratory phenotype of progenitors, it may promote myelin repair. On the other hand, stathmin in mature OLs may indicate cell stress and possibly affect survival.


Asunto(s)
Encéfalo/metabolismo , Enfermedades Desmielinizantes/metabolismo , Proteínas de Microtúbulos/biosíntesis , Oligodendroglía/metabolismo , Fosfoproteínas/biosíntesis , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Enfermedades Desmielinizantes/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Etidio , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microtúbulos/fisiología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Fosfoproteínas/fisiología , Ratas , Estatmina , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...