Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 244: 117936, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109963

RESUMEN

The presence of plastic fragments in aquatic environments, particularly at the micro- and nano-scale, has become a significant global concern. However, current detection methods are limited in their ability to reveal the presence of such particles in liquid samples. In this study, we propose the use of a fluorescence lifetime analysis system for the detection of micro- and nanoplastics in water. This approach relies on the inherent endogenous fluorescence of plastic materials and involves the collection of single photons emitted by plastic fragments upon exposure to a pulsed laser beam. Briefly, a pulsed laser beam (repetition frequency = 40 MHz) shines onto a sample solution, and the emitted light is filtered, collected, and used to trace the time distributions of the photons with high temporal resolution. Finally, the fluorescence lifetime was measured using fitting procedures and a phasor analysis. Phasor analysis is a fit-free method that allows the measurement of the fluorescence lifetime of a sample without any assumptions or prior knowledge of the sample decay pattern. The developed instrument was tested using fluorescence references and validated using unlabelled micro- and nano-scale particles. Our system successfully detected polystyrene particles in water, achieving a remarkable sensitivity with a detection limit of 0.01 mg/mL, without the need for sample pre-treatment or visual inspection. Although further studies are necessary to enhance the detection limit of the technique and distinguish between different plastic materials, this proof-of-concept study suggests the potential of the fluorescence lifetime-based approach as a rapid, robust, and cost-effective method for early warning detection and identification of plastic contaminants in aquatic environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Agua , Fluorescencia , Contaminantes Químicos del Agua/análisis , Poliestirenos/análisis , Plásticos/análisis
2.
Phys Rev Lett ; 109(14): 146402, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23083262

RESUMEN

The isostructural α-γ phase transition in cerium is analyzed using density-functional theory with different exchange-correlation functionals, in particular the PBE0 hybrid functional and the exact-exchange plus correlation in the random-phase approximation [(EX+cRPA)@PBE0] approach. We show that the Hartree-Fock exchange part of the hybrid functional gives rise to two distinct solutions at zero temperature that can be associated with the α and γ phases of cerium. However, despite the relatively good structural and magnetic properties, PBE0 predicts the γ phase to be the stable phase at ambient pressure and zero temperature, in contradiction with low temperature experiments. EX+cRPA reverses the energetic ordering, which emphasizes the importance of correlation for rare-earth systems.


Asunto(s)
Cerio/química , Modelos Químicos , Transición de Fase , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA