Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000728

RESUMEN

Synthetic plastic polymers are causing considerable emerging ecological hazards. Starch-based biofilms are a potential alternative. However, depending on the natural source and extraction method, the properties of starch can vary, affecting the physicochemical characteristics of the corresponding casted films generated from it. These differences might entail morphological changes at the nanoscale, which can be explored by inspecting their surfaces. Potato (Solanum tuberosum) is a well-known tuber containing a high amount of starch, but the properties of the biofilms extracted from it are dependent on the specific variety. In this research, four Ecuadorian potato varieties (Leona Blanca, Única, Chola, and Santa Rosa) were analyzed and blended with different glycerol concentrations. The amylose content of each extracted starch was estimated, and biofilms obtained were characterized at both macroscopic and nanoscopic levels. Macroscopic tests were conducted to evaluate their elastic properties, visible optical absorption, water vapor permeability, moisture content, and solubility. It was observed that as the glycerol percentage increased, both moisture content and soluble matter increased, while tensile strength decreased, especially in the case of the Chola variety. These results were correlated to a surface analysis using atomic force microscopy, providing a possible explanation based on the topography and phase contrast observations made at the nanoscale.

2.
J Magn Reson ; 363: 107691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776598

RESUMEN

The low frequency region of the spectrum is a challenging regime for quantum probes. We support the idea that, in this regime, performing Ramsey measurements carefully controlling the time at which each measurement is initiated is an excellent signal detection strategy. We use the Fisher information to demonstrate a high quality performance in the low frequency regime, compared to more elaborated measurement sequences, and to optimize the correlated Ramsey sequence according to any given experimental parameters, showing that correlated Ramsey rivals with state-of-the-art protocols, and can even outperform commonly employed sequences such as dynamical decoupling in the detection of low frequency signals. Contrary to typical quantum detection protocols for oscillating signals, which require adjusting the time separation between pulses to match the half period of the target signal, and consequently see their scope limited to signals whose period is shorter than the characteristic decoherence time of the probe, or to those protocols whose target is primarily static signals, the time-tagged correlated Ramsey sequence simultaneously tracks the amplitude and the phase information of the target signal, regardless of its frequency, which crucially permits correlating measurements in post-processing, leading to efficient spectral reconstruction.

3.
Phys Rev Lett ; 131(15): 150801, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897751

RESUMEN

Diffusion noise represents a major constraint to successful liquid state nano-NMR spectroscopy. Using the Fisher information as a faithful measure, we theoretically calculate and experimentally show that phase sensitive protocols are superior in most experimental scenarios, as they maximize information extraction from correlations in the sample. We derive the optimal experimental parameters for quantum heterodyne detection (Qdyne) and present the most accurate statistically polarized nano-NMR Qdyne detection experiments to date, leading the way to resolve chemical shifts and J couplings at the nanoscale.

4.
Int Ophthalmol ; 43(11): 4131-4136, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37505289

RESUMEN

INTRODUCTION: It is well known that the femtosecond laser lamellar cut induces some degree of surface roughness. Nevertheless, as in femtosecond laser-assisted LASIK (FS-LASIK), an excimer LASIK ablation is performed, and the post-ablation stromal bed should show some degree of smoothening. We decided to compare, using atomic force microscopy (AFM), the roughness of the corneal stromal bed, after a femtosecond lasers device flap was created with or without an excimer myopic ablation. METHODS: Using 6 freshly enucleated porcine eyes, we created in every eye a flap using a femtosecond laser. Additionally, in 3 eyes, an excimer laser ablation to correct-3 diopters (D) was made. AFM imaging of the remaining corneal stroma was performed. Ten different square areas of 20 µm x 20 µm at the central area of the stroma of each corneal sample were studied. The roughness parameters used were the root-mean-square deviation from a perfectly flat surface. RESULTS: The RMS deviation was 360 ± 120 nm in femtosecond laser only, and 110 ± 20 nm in those cases where excimer is also involved (p < 0.0001). CONCLUSIONS: Our results show that the roughness of the surface treated with excimer is clearly lower than in the group with no excimer ablation; thus, the application of laser excimer after a flap created by femtosecond laser seems to soften the nano-irregularities created by this technique.


Asunto(s)
Córnea , Queratomileusis por Láser In Situ , Animales , Porcinos , Microscopía de Fuerza Atómica , Córnea/cirugía , Sustancia Propia/cirugía , Queratomileusis por Láser In Situ/métodos , Láseres de Excímeros/uso terapéutico
5.
Nanotechnology ; 34(36)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37279698

RESUMEN

Following defocused ion beam sputtering, large area highly corrugated and faceted nanoripples are formed on calcite (10.4) faces in a self-organized fashion. High resolution atomic force microscopy (AFM) imaging reveals that calcite ripples are defined by facets with highly kinked (11.0) and (21¯.12) terminations.In situAFM imaging during the exposure of such modified calcite surfaces to PbCl2aqueous solution reveals that the nanostructured calcite surface promotes the uptake of Pb. In addition, we observed the progressive smoothing of the highly reactive calcite facet terminations and the formation of Pb-bearing precipitates elongated in registry with the underlying nanopattern. By SEM-EDS analysis we quantified a remarkable 500% increase of the Pb uptake rate, up to 0.5 atomic weight % per hour, on the nanorippled calcite in comparison to its freshly cleaved (10.4) surfaces. These results suggest that nanostructurated calcite surfaces can be used for developing future systems for lead sequestration from polluted waters.


Asunto(s)
Carbonato de Calcio , Nanoestructuras , Plomo , Agua , Microscopía de Fuerza Atómica/métodos
6.
Polymers (Basel) ; 15(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37050393

RESUMEN

Extensive plastic production has become a serious environmental and health problem due to the lack of efficient treatment of plastic waste. Polyethylene terephthalate (PET) is one of the most used polymers and is accumulating in landfills or elsewhere in nature at alarming rates. In recent years, enzymatic degradation of PET by Ideonella sakaiensis PETase (IsPETase), a cutinase-like enzyme, has emerged as a promising strategy to completely depolymerize this polymer into its building blocks. Here, inspired by the architecture of cutinases and lipases homologous to IsPETase and using 3D structure information of the enzyme, we rationally designed three mutations in IsPETase active site for enhancing its PET-degrading activity. In particular, the S238Y mutant, located nearby the catalytic triad, showed a degradation activity increased by 3.3-fold in comparison to the wild-type enzyme. Importantly, this structural modification favoured the function of the enzyme in breaking down highly crystallized (~31%) PET, which is found in commercial soft drink bottles. In addition, microscopical analysis of enzyme-treated PET samples showed that IsPETase acts better when the smooth surface of highly crystalline PET is altered by mechanical stress. These results represent important progress in the accomplishment of a sustainable and complete degradation of PET pollution.

7.
Polymers (Basel) ; 14(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36236064

RESUMEN

The replacement of synthetic polymers by starch biofilms entails a significant potentiality. They are non-toxic materials, biodegradable, and relatively easy to gather from several sources. However, various applications may require physicochemical properties that might prevent the use of some types of starch biofilms. Causes should be explored at the nanoscale. Here we present an atomic force microscopy surface analysis of starch biofilms extracted from the Andean tubers melloco (Ullucus tuberosus), mashua (Tropaeolum tuberosum), oca (Oxalis tuberosa), and potato (Solanum tuberosum) and relate the results to the macroscopic effects of moisture content, water activity, total soluble matter, water vapor permeability, elastic properties, opacity and IR absorption. Characterization reveals important differences at the nanoscale between the starch-based biofilms examined. Comparison permitted correlating macroscopic properties observed to the topography and tapping phase contrast segregation at the nanoscale. For instance, those samples presenting granular topography and disconnected phases at the nanoscale are associated with less elastic strength and more water molecule affinity. As an application example, we propose using the starch biofilms developed as a matrix to dispose of mouthwash and discover that melloco films are quite appropriate for this purpose.

8.
Polymers (Basel) ; 13(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34578084

RESUMEN

In this study, edible packaging based on discarded green banana (Musa acuminata AAA) flour (whole banana and banana peel flours) was developed for food applications. Films were characterized in terms of film-forming ability, mechanical, barrier, thermal, microbiological, and sensory properties. The film forming solutions were studied for rheological properties. Two formulations were selected based on their film-forming ability: whole banana flour (2.5%), peel flour (1.5%) and glycerol (1.0 %, F-1.0 G or 1.5%, F-1.5 G). Adding 1.5% plasticizer, due to the hygroscopic effect, favored the water retention of the films, increasing the density, which also resulted in a decrease in lightness and transparency. Water activity shows no difference between the two formulations, which were water resistant for at least 25 h. DSC results showed a similar melting temperature (Tm) for both films, around 122 °C. Both films solutions showed a viscoelastic behavior in the frequency spectrum, being the elastic modulus greater in F-1.0 G film than F-1.5 G film at low frequency. F-1.0 G film was less firm, deformable and elastic, with a less compact structure and a rougher surface as confirmed by AFM, favoring a higher water vapor permeability with respect to F.1.5 G film. Microorganisms such as Enterobacteria and Staphylococcus aureus were not found in the films after a period of storage (1 year under ambient conditions). The F-1.0 G film with added spices (cumin, oregano, garlic, onion, pepper, and nutmeg) was tested for some food applications: as a snack (with or without heat treatment) and as a wrap for grilled chicken. The performance of the seasoned film during chilled storage of chicken breast was also studied. Sensory evaluation showed good overall acceptability of all applications. In addition, the chicken breast wrapped with the seasoned film registered lower counts (1-log cycle) than the control (covered with a polystyrene bag) and the film without spices. Green banana flour is a promising material to develop edible films for food applications.

9.
BMC Ophthalmol ; 21(1): 280, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261440

RESUMEN

BACKGROUND: To compare the anterior surface roughness of two commercially available posterior chamber phakic intraocular lenses (IOLs) using atomic force microscopy (AFM). METHODS: Four phakic IOLs were used for this prospective, experimental study: two Visian ICL EVO+ V5 lenses and two iPCL 2.0 lenses. All of them were brand new, were not previously implanted in humans, were monofocal and had a dioptric power of - 12 diopters (D). The anterior surface roughness was assessed using a JPK NanoWizard II® atomic force microscope in contact mode immersed in liquid. Olympus OMCL-RC800PSA commercial silicon nitride cantilever tips were used. Anterior surface roughness measurements were made in 7 areas of 10 × 10 µm at 512 × 512 point resolution. The roughness was measured using the root-mean-square (RMS) value within the given regions. RESULTS: The mean of all anterior surface roughness measurements was 6.09 ± 1.33 nm (nm) in the Visian ICL EVO+ V5 and 3.49 ± 0.41 nm in the iPCL 2.0 (p = 0.001). CONCLUSION: In the current study, we found a statistically significant smoother anterior surface in the iPCL 2.0 phakic intraocular lenses compared with the VISIAN ICL EVO+ V5 lenses when studied with atomic force microscopy.


Asunto(s)
Cristalino , Lentes Intraoculares Fáquicas , Humanos , Implantación de Lentes Intraoculares , Cristalino/cirugía , Microscopía de Fuerza Atómica , Estudios Prospectivos
10.
PLoS One ; 16(5): e0252449, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34043738

RESUMEN

PURPOSE: To compare the induced corneal stromal bed roughness measured with atomic force microscopy (AFM) after LASIK flap creation with the IntraLase 60 kHz and the VisuMax femtosecond laser platforms. METHODS: Three freshly enucleated porcine eyes were operated with each femtosecond laser in this experimental study. Standard LASIK treatment parameters were used for the experiment. After LASIK flap creation, the corneal stromal roughness was assessed using a JPK NanoWizard II® AFM in contact mode immersed in liquid. Olympus OMCL-RC800PSA commercial silicon nitride cantilever tips were used. Surface measurements were made in 10 regions of the central cornea of each sample measuring 20 x 20 microns, at 512 x 512 point resolution. Roughness was measured using the root-mean-square (RMS) value within the given regions. RESULTS: Measurements from 30 regions of the 3 eyes (10 measurements per eye) in the Intralase (FS1) group, and 30 regions of the 3 eyes (10 measurements per eye) in the VisuMax (FS2) group were analyzed. There was a statistically significant difference in mean ± standard deviation RMS values between the FS1 and the FS2 groups (360 ± 120 versus 230 ± 100 nm respectively; P< 0.00001). CONCLUSION: This AFM study indicates that the surface of the stromal bed after LASIK flap creation is smoother in the FS2 group than the FS1 group.


Asunto(s)
Sustancia Propia/fisiología , Queratomileusis por Láser In Situ/métodos , Microscopía de Fuerza Atómica , Animales , Sustancia Propia/cirugía , Queratomileusis por Láser In Situ/instrumentación , Porcinos , Factores de Tiempo
11.
Nanoscale ; 13(14): 6772-6779, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33885479

RESUMEN

Protein-based materials are usually considered as insulators, although conductivity has been recently shown in proteins. This fact opens the door to develop new biocompatible conductive materials. While there are emerging efforts in this area, there is an open challenge related to the limited conductivity of protein-based systems. This work shows a novel approach to tune the charge transport properties of protein-based materials by using electron-dense AuNPs. Two strategies are combined in a unique way to generate the conductive solid films: (1) the controlled self-assembly of a protein building block; (2) the templating of AuNPs by the engineered building block. This bottom-up approach allows controlling the structure of the films and the distribution of the AuNPs within, leading to enhanced conductivity. This work illustrates a promising strategy for the development of effective hybrid protein-based bioelectrical materials.


Asunto(s)
Doping en los Deportes , Nanopartículas del Metal , Conductividad Eléctrica , Oro , Proteínas
12.
Sci Rep ; 10(1): 19691, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184381

RESUMEN

Diffusion broadening of spectral lines is the main limitation to frequency resolution in non-polarized liquid state nano-NMR. This problem arises from the limited amount of information that can be extracted from the signal before losing coherence. For liquid state NMR as with most generic sensing experiments, the signal is thought to decay exponentially, severely limiting resolution. However, there is theoretical evidence that predicts a power law decay of the signal's correlations due to diffusion noise in the non-polarized nano-NMR scenario. In this work we show that in the NV based nano-NMR setup such diffusion noise results in high spectral resolution.

13.
Angew Chem Int Ed Engl ; 59(39): 17091-17096, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32543105

RESUMEN

Despite the central importance of aqueous amphiphile assemblies in science and industry, the size and shape of these nano-objects is often difficult to control with accuracy owing to the non-directional nature of the hydrophobic interactions that sustain them. Here, using a bioinspired strategy that consists of programming an amphiphile with shielded directional Watson-Crick hydrogen-bonding functions, its self-assembly in water was guided toward a novel family of chiral micelle nanotubes with partially filled lipophilic pores of about 2 nm in diameter. Moreover, these tailored nanotubes are successfully demonstrated to extract and host molecules that are complementary in size and chemical affinity.

14.
J Chem Phys ; 152(8): 084201, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32113347

RESUMEN

The study and manipulation of low dipole moment quantum states have been challenging due to their inaccessibility by conventional spectroscopic techniques. Controlling the spin in such states requires unfeasible strong magnetic fields to overcome typical decoherence rates. However, the advent of terahertz technology and its application in magnetic pulses opens up a new scenario. In this article, we focus on an electron-hole pair model to demonstrate that it is possible to control the precession of the spins and to modify the transition rates to different spin states. Enhancing transitions from a bright state to a dark state with different spins means that the latter can be revealed by ordinary spectroscopy. We propose a modification of the standard two-dimensional spectroscopic scheme in which a three pulse sequence is encased in a magnetic pulse. Its role is to drive transitions between a bright and a dark spin state, making the latter susceptible to spectroscopic investigation.

15.
Graefes Arch Clin Exp Ophthalmol ; 257(12): 2665-2670, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31650272

RESUMEN

PURPOSE: To describe and compare the stromal bed roughness obtained after laser in situ keratomileusis (LASIK) flap creation using a corneal femtosecond laser platform (iFS 150) and a "dual" femtosecond (FS) laser platform (LenSx). METHODS: This ex vivo experimental study was conducted in an animal model using 12 freshly enucleated porcine eyes, six with each femtosecond laser. The standard laser treatment parameters were used for the experiment. After LASIK flap creation, the corneal stromal roughness was assessed using atomic force microscopy (AFM) in contact mode immersed in liquid. In each sample, surface measurements were obtained in 60 regions of six eyes per FS laser in 10 20 × 20-micron areas of the central corneal stroma at 512 × 512-point resolution. The surface roughness was measured and the root-mean-square (RMS) values of the roughness were obtained. RESULTS: The mean RMS ± standard deviation values were 430 ± 150 nm for the corneal femtosecond laser platform and 370 ± 100 nm for the dual FS laser platform (P < 0.011). CONCLUSIONS: In this experimental study with AFM, we found smoother stromal beds after LASIK flap creation with LenSx compared to iFS 150 kHz. Further studies are needed to understand visual implications of the differences found.


Asunto(s)
Sustancia Propia/patología , Queratomileusis por Láser In Situ/métodos , Láseres de Excímeros/uso terapéutico , Miopía/cirugía , Colgajos Quirúrgicos , Agudeza Visual , Animales , Sustancia Propia/cirugía , Modelos Animales de Enfermedad , Microscopía de Fuerza Atómica , Miopía/patología , Periodo Posoperatorio , Porcinos
16.
Phys Rev Lett ; 122(6): 060503, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822046

RESUMEN

The limits of frequency resolution in nano-NMR experiments have been discussed extensively in recent years. It is believed that there is a crucial difference between the ability to resolve a few frequencies and the precision of estimating a single one. Whereas the efficiency of single frequency estimation gradually increases with the square root of the number of measurements, the ability to resolve two frequencies is limited by the specific timescale of the signal and cannot be compensated for by extra measurements. Here we show theoretically and demonstrate experimentally that the relationship between these quantities is more subtle and both are only limited by the Cramér-Rao bound of a single frequency estimation.

17.
Adv Sci (Weinh) ; 6(1): 1801455, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30643727

RESUMEN

Electrically pumped organic lasing requires the integration of electrodes contact into the laser cavity in an organic light-emitting diode (OLED) or organic field effect transistor configuration to enable charge injection. Efficient and balanced carrier injection requires in turn alignment of the energy levels of the organic active layers with the Fermi levels of the cathode and anode. This can be achieved through chemical substitution with specific aromatic functional groups, although paying the price for a substantial (and often detrimental) change in the emission and light amplifying properties of the organic gain medium. Here, using host-guest energy transfer mixtures with hosts bearing a systematic and gradual shift in molecular orbitals is proposed, which reduces the amplified spontaneous emission (ASE) threshold of the organic gain medium significantly while leaving the peak emission unaffected. By virtue of the low guest doping required for complete host-to-guest energy transfer, the injection levels in the blends are attributed to the host whereas the gain properties solely depend on the guest. It is demonstrated that the ASE peak and thresholds of blends with different hosts do not differ while the current efficiency of OLEDs devices is deeply influenced by molecular orbital tuning of the hosts.

18.
Nanoscale Adv ; 1(10): 3980-3991, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36132122

RESUMEN

The development of new active biocompatible materials and devices is a current need for their implementation in multiple fields, including the fabrication of implantable devices for biomedical applications and sustainable devices for bio-optics and bio-optoelectronics. This paper describes a simple strategy to use designed proteins to develop protein-based functional materials. Using simple proteins as self-assembling building blocks as a platform for the fabrication of new optically active materials takes previous work one step further towards the design of materials with defined structures and functions using naturally occurring protein materials, such as silk. The proposed fabrication strategy generates thin and flexible nanopatterned protein films by letting the engineered protein elements self-assemble over the surface of an elastomeric stamp with nanoscale features. These nanopatterned protein films are easily transferred onto 3D objects (flat and curved) by moisture-induced adhesion. Additionally, flexible nanopatterned protein films are prepared by incorporating a thin polymeric layer as a back support. Finally, taking advantage of the tunability of the selected protein scaffold, the flexible protein-based surfaces are endowed with optical functions, achieving efficient lasing features. As such, this work enables the simple and cost-effective production of flexible and nanostructured, protein-based, optically active biomaterials and devices over large areas toward emerging applications.

19.
Chem Sci ; 9(33): 6779-6784, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30310610

RESUMEN

We describe the synthesis of rotaxane-type species composed of macrocyclic porphyrin rings mechanically interlocked with SWCNT threads. The formation of mechanically interlocked SWCNTs (MINTs) proceeds with chiral selectivity, and was confirmed by spectroscopic and analytical techniques and adequate control experiments, and corroborated by high-resolution electron microscopy. From a thorough characterization of the MINTs through UV-vis-NIR absorption, fluorescence, Raman, and transient absorption spectroscopy we analyse in detail the electronic interactions of the porphyrins and the SWCNTs in the ground and excited states.

20.
Nat Commun ; 9(1): 2671, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991679

RESUMEN

One of the most attractive applications of carbon nanomaterials is as catalysts, due to their extreme surface-to-volume ratio. The substitution of C with heteroatoms (typically B and N as p- and n-dopants) has been explored to enhance their catalytic activity. Here we show that encapsulation within weakly doping macrocycles can be used to modify the catalytic properties of the nanotubes towards the reduction of nitroarenes, either enhancing it (n-doping) or slowing it down (p-doping). This artificial regulation strategy presents a unique combination of features found in the natural regulation of enzymes: binding of the effectors (the macrocycles) is noncovalent, yet stable thanks to the mechanical link, and their effect is remote, but not allosteric, since it does not affect the structure of the active site. By careful design of the macrocycles' structure, we expect that this strategy will contribute to overcome the major hurdles in SWNT-based catalysts: activity, aggregation, and specificity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA