Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(8): 110435, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39108706

RESUMEN

Compartmentalization of proteins by liquid-liquid phase separation (LLPS) is used by cells to control biochemical reactions spatially and temporally. Among them, the recruitment of proteins to DNA foci and nucleolar trafficking occur by biomolecular condensation. Within this frame, the oncoprotein SET/TAF-Iß plays a key role in both chromatin remodeling and DNA damage response, as does nucleophosmin (NPM1) which indeed participates in nucleolar ribosome synthesis. Whereas phase separation by NPM1 is widely characterized, little is known about that undergone by SET/TAF-Iß. Here, we show that SET/TAF-Iß experiences phase separation together with respiratory cytochrome c (Cc), which translocates to the nucleus upon DNA damage. Here we report the molecular mechanisms governing Cc-induced phase separation of SET/TAF-Iß and NPM1, where two lysine-rich clusters of Cc are essential to recognize molecular surfaces on both partners in a specific and coordinated manner. Cc thus emerges as a small, globular protein with sequence-encoded heterotypic phase-separation properties.

2.
Nat Struct Mol Biol ; 29(10): 1024-1036, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220893

RESUMEN

The regular functioning of the nucleolus and nucleus-mitochondria crosstalk are considered unrelated processes, yet cytochrome c (Cc) migrates to the nucleus and even the nucleolus under stress conditions. Nucleolar liquid-liquid phase separation usually serves the cell as a fast, smart mechanism to control the spatial localization and trafficking of nuclear proteins. Actually, the alternative reading frame (ARF), a tumor suppressor protein sequestered by nucleophosmin (NPM) in the nucleoli, is shifted out from NPM upon DNA damage. DNA damage also triggers early translocation of respiratory Cc to nucleus before cytoplasmic caspase activation. Here, we show that Cc can bind to nucleolar NPM by triggering an extended-to-compact conformational change, driving ARF release. Such a NPM-Cc nucleolar interaction can be extended to a general mechanism for DNA damage in which the lysine-rich regions of Cc-rather than the canonical, arginine-rich stretches of membrane-less organelle components-controls the trafficking and availability of nucleolar proteins.


Asunto(s)
Citocromos c , Nucleofosmina , Arginina , Caspasas , Lisina , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor
3.
Comput Struct Biotechnol J ; 20: 3695-3707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891793

RESUMEN

Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iß (SET/TAF-Iß), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iß is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iß is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iß:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iß (a.k.a. SET/TAF-Iß ΔC)-which exhibits an unexpected, intrinsically highly dynamic behavior-is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations.

4.
FEBS Open Bio ; 11(9): 2418-2440, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938164

RESUMEN

Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.


Asunto(s)
Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Citocromos c/metabolismo , Chaperonas de Histonas/metabolismo , Mitocondrias/metabolismo , Animales , Núcleo Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Citocromos c/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Histonas/metabolismo , Humanos , Mitocondrias/genética
5.
FEBS Lett ; 593(22): 3101-3119, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31663111

RESUMEN

Cytochrome c (Cc) is a protein that functions as an electron carrier in the mitochondrial respiratory chain. However, Cc has moonlighting roles outside mitochondria driving the transition of apoptotic cells from life to death. When living cells are damaged, Cc escapes its natural mitochondrial environment and, once in the cytosol, it binds other proteins to form a complex named the apoptosome-a platform that triggers caspase activation and further leads to controlled cell dismantlement. Early released Cc also binds to inositol 1,4,5-triphosphate receptors on the ER membrane, which stimulates further massive Cc release from mitochondria. Besides the well-characterized binding proteins contributing to the proapoptotic functions of Cc, many novel protein targets have been recently described. Among them, histone chaperones were identified as key partners of Cc following DNA breaks, indicating that Cc might modulate chromatin dynamics through competitive binding to histone chaperones. In this article, we review the ample set of recently discovered antiapoptotic proteins-involved in DNA damage, transcription, and energetic metabolism-reported to interact with Cc in the cytoplasm and even the nucleus upon DNA breaks.


Asunto(s)
Núcleo Celular/metabolismo , Citocromos c/metabolismo , Citoplasma/metabolismo , Ensamble y Desensamble de Cromatina , Chaperonas de Histonas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA